【題目】如圖是我國2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖.
注:年份代碼1~7分別對應(yīng)年份2010~2016.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合與
的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立關(guān)于
的回歸方程(系數(shù)精確到0.01),預(yù)測2018年我國生活垃圾無害化處理量.
參考數(shù)據(jù):,
,
,
.
參考公式:相關(guān)系數(shù),回歸方程
中斜率和截距的最小二乘估計公式分別為
,
.
【答案】(Ⅰ)與
的線性相關(guān)程度相當(dāng)大;(Ⅱ)無害化處理量約為1.82億噸.
【解析】
(Ⅰ)由折線圖中數(shù)據(jù)和附注中參考數(shù)據(jù),計算相關(guān)系數(shù),根據(jù)相關(guān)系數(shù)的值得出結(jié)論;
(Ⅱ)計算回歸系數(shù),寫出y關(guān)于t的回歸方程;將2018年對應(yīng)的t值代入回歸方程,計算對應(yīng)的函數(shù)值即可.
(Ⅰ)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得
,
,
,
,
∴.
因為與
的相關(guān)系數(shù)近似為0.99,說明
與
的線性相關(guān)程度相當(dāng)大,
從而可以用線性回歸模型擬合與
的關(guān)系.
(Ⅱ)由及(1)得
,
.
所以關(guān)于
的回歸方程為
.
將2018年對應(yīng)的代入回歸方程得
.
所以預(yù)測2018年我國生活垃圾無害化處理量約為1.82億噸.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機挑選出5名同學(xué),他們的數(shù)學(xué)成績與物理成績
如下表:
數(shù)據(jù)表明與
之間有較強的線性關(guān)系.
(1)求關(guān)于
的線性回歸方程;
(2)該班一名同學(xué)的數(shù)學(xué)成績?yōu)?10分,利用(1)中的回歸方程,估計該同學(xué)的物理成績;
(3)本次考試中,規(guī)定數(shù)學(xué)成績達(dá)到125分為優(yōu)秀,物理成績達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為和
,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯誤概率不超過0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù),
.
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓的直徑,
為圓心,
,
為半圓上的點.
(Ⅰ)請你為點確定位置,使
的周長最大,并說明理由;
(Ⅱ)已知,設(shè)
,當(dāng)
為何值時,
(。┧倪呅的周長最大,最大值是多少?
(ⅱ)四邊形的面積最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)= (a∈R),f(x)=ln(x+1)+g(x).
(1)若函數(shù)g(x)過點(1,1),求函數(shù)f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線
的焦點
重合,且橢圓短軸的兩個端點與點
構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過點的直線
與橢圓交于不同的兩點
,試問在
軸上是否存在定點
,使
恒為定值?若存在,求出
的坐標(biāo),并求出這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)滿足
,
的虛部為2,
(1)求復(fù)數(shù);
(2)設(shè)在復(fù)平面上對應(yīng)點分別為
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與
的圖象關(guān)于
軸對稱,當(dāng)函數(shù)
和
在區(qū)間
同時遞增或同時遞減時,把區(qū)間
叫做函數(shù)
的“不動區(qū)間”.若區(qū)間
為函數(shù)
的“不動區(qū)間”,則實數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,x
R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個零點,求a的取值范圍;
(Ⅲ)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com