【題目】已知函數(shù)(
).
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)若,
恒成立,求
的最大整數(shù)值.
【答案】(1)當(dāng)時(shí),
在
上沒(méi)有極值點(diǎn);當(dāng)
時(shí),
在
上有一個(gè)極值點(diǎn).
(2)3.
【解析】試題分析:
(1)首先對(duì)函數(shù)求導(dǎo),然后分類討論可得當(dāng)時(shí),
在
上沒(méi)有極值點(diǎn);當(dāng)
時(shí),
在
上有一個(gè)極值點(diǎn).
(2)結(jié)合題中所給的條件構(gòu)造新函數(shù)(
),結(jié)合函數(shù)的性質(zhì)可得實(shí)數(shù)
的最大整數(shù)值為3.
試題解析:
(1)的定義域?yàn)?/span>
,且
.
當(dāng)時(shí),
在
上恒成立,函數(shù)
在
上單調(diào)遞減.
∴在
上沒(méi)有極值點(diǎn);
當(dāng)時(shí),令
得
;
列表
所以當(dāng)時(shí),
取得極小值.
綜上,當(dāng)時(shí),
在
上沒(méi)有極值點(diǎn);
當(dāng)時(shí),
在
上有一個(gè)極值點(diǎn).
(2)對(duì),
恒成立等價(jià)于
對(duì)
恒成立,
設(shè)函數(shù)(
),則
(
),
令函數(shù),則
(
),
當(dāng)時(shí),
,所以
在
上是增函數(shù),
又,
,
所以存在,使得
,即
,
且當(dāng)時(shí),
,即
,故
在
在上單調(diào)遞減;
當(dāng)時(shí),
,即
,故
在
上單調(diào)遞增;
所以當(dāng)時(shí),
有最小值
,
由得
,即
,
所以,
所以,又
,所以實(shí)數(shù)
的最大整數(shù)值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),設(shè)
為曲線
在點(diǎn)
處的切線,其中
.
(Ⅰ)求直線的方程(用
表示);
(Ⅱ)求直線在
軸上的截距的取值范圍;
(Ⅲ)設(shè)直線分別與曲線
和射線
(
)交于
,
兩點(diǎn),求
的最小值及此時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為評(píng)估新教改對(duì)教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚(gè)平行班進(jìn)行對(duì)比試驗(yàn),甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時(shí)間后進(jìn)行水平測(cè)試,成績(jī)結(jié)果全部落在區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖所示,兩個(gè)班人數(shù)均為60人,成績(jī)80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認(rèn)為學(xué)生成績(jī)優(yōu)良與班級(jí)有關(guān)?
(2)以班級(jí)分層抽樣,抽取成績(jī)優(yōu)良的5人參加座談,現(xiàn)從5人中隨機(jī)選3人來(lái)作書(shū)面發(fā)言,求發(fā)言人至少有2人來(lái)自甲班的概率.
(以下臨界值及公式僅供參考)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次猜獎(jiǎng)游戲中,1,2,3,4四扇門(mén)里擺放了,
,
,
四件獎(jiǎng)品(每扇門(mén)里僅放一件).甲同學(xué)說(shuō):1號(hào)門(mén)里是
,3號(hào)門(mén)里是
;乙同學(xué)說(shuō):2號(hào)門(mén)里是
,3號(hào)門(mén)里是
;丙同學(xué)說(shuō):4號(hào)門(mén)里是
,2號(hào)門(mén)里是
;丁同學(xué)說(shuō):4號(hào)門(mén)里是
,3號(hào)門(mén)里是
.如果他們每人都猜對(duì)了一半,那么4號(hào)門(mén)里是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程是
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),若直線
與曲線
交于
,
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人做定點(diǎn)投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為
,甲投籃3次均未命中的概率為
,甲、乙每次投籃是否命中相互之間沒(méi)有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為:
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直角坐標(biāo)系下曲線與曲線
的方程;
(2)設(shè)為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到
上點(diǎn)的距離的最大值,并求此時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),若存在實(shí)數(shù)
使得不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來(lái)最嚴(yán)重的污染過(guò)程,為了探究車(chē)流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車(chē)流量與
的數(shù)據(jù)如表:
時(shí)間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車(chē)流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點(diǎn)圖知與
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程;
的濃度;
(ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在
內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)
的濃度平均值在
內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車(chē)流量在多少萬(wàn)輛以內(nèi)?(結(jié)果以萬(wàn)輛為單位,保留整數(shù))
參考公式:回歸直線的方程是,其中
,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com