日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD垂直于底面ABCD,PDDC,點E是PC的中點

          (Ⅰ)求證:PA∥平面EBD;

          )求二面角EBDP的余弦值.

          【答案】)詳見解析;(.

          【解析】

          試題分析:)幾何法:連接,連接,根據(jù)線面平行的判定定理可先證明線線平行,即證明;向量法:以點D為原點,DA為x軸,DC為y軸,DP為z軸建立直角坐標系,求平面的法向量,若,說明與法向量垂直,與平面平行;

          )向量法求二面角的余弦值,即先求兩個平面的法向量,而平面的法向量就是,即求.

          試題解析:解:()法一:以點D為原點,DA為x軸,DC為y軸,DP為z軸建立直角坐標系,設(shè)正方形的邊長為1,則

          ,

          設(shè)平面EBD的法向量為,

          可求得,,平面EBD.

          即PA平面EBD.

          法二:連接AC,設(shè)AC∩BD=O,連接OE,則OE∥PA,∴PA∥平面EBD.

          ()設(shè)平面PBD的法向量為

          ,二面角E-BD-P的平面角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知的三個頂點分別為是, .

          (Ⅰ)求邊上的高所在的直線方程;

          (Ⅱ)求過點且在兩坐標軸上的截距相等的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,小波從街區(qū)開始向右走,在每個十字路口都會遇到紅綠燈要是遇到綠燈則小波繼續(xù)往前走,遇到紅燈就往回走假設(shè)任意兩個十字路口的綠燈亮或紅燈亮都是相互獨立的,且綠燈亮的概率都是,紅燈亮的概率都是

          (1)求小波遇到4次綠燈后,處于街區(qū)的概率;

          (2)若小波一共遇到了3次紅綠燈,設(shè)此時小波所處的街區(qū)與街區(qū)相距的街道數(shù)為(如小波若處在街區(qū)則相距零個街道處在,街區(qū)都是相距2個街道),求的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓(xùn),特別組織了個專項的考試,成績統(tǒng)計如下:

          第一項

          第二項

          第三項

          第四項

          第五項

          甲的成績

          乙的成績

          (1)根據(jù)有關(guān)統(tǒng)計知識,回答問題:若從甲、乙人中選出人參加新崗培訓(xùn),你認為選誰合適,請說明理由;

          (2)根據(jù)有關(guān)槪率知識,解答以下問題:

          從甲、乙人的成績中各隨機抽取一個,設(shè)抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在梯形中,,四邊形為矩形,平面平面.

          (1)求證:平面

          (2)點在線段上運動,設(shè)平面與平面所成二面角為,試求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)求上的最小值

          2)若存在兩個不同的實數(shù),使得,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),其中

          (1)求的單調(diào)區(qū)間;

          (2)若存在極值點,其中,求證;

          (3)設(shè)函數(shù),求證在區(qū)間上的最大值不小于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一名學(xué)生每天騎車上學(xué),從他家里到學(xué)校的途中有6個交通崗,假設(shè)在每個交通崗遇到紅燈的事件是相互獨立的,并且概率都是.

          (1)假設(shè)為這名學(xué)生在途中遇到紅燈的次數(shù),求的分布列;

          (2)設(shè)為這名學(xué)生在首次停車前經(jīng)過的路口數(shù),求的分布列;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽1人為優(yōu)秀的概率為.

          優(yōu)秀

          非優(yōu)秀

          合計

          甲班

          10

          乙班

          30

          合計

          110

          Ⅰ.請完成上面的列聯(lián)表;

          Ⅱ.根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認為“成績與班級有關(guān)系”.

          參考公式與臨界值表:.

          查看答案和解析>>

          同步練習(xí)冊答案