日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若關(guān)于x的不等式x2-4x-2-a>0在區(qū)間(1,4)內(nèi)有解,則實數(shù)a的取值范圍是( 。
          A.a(chǎn)<-2B.a(chǎn)>-2C.a(chǎn)>-6D.a(chǎn)<-6
          令f(x)=x2-4x-2-a,
          則函數(shù)的圖象為開口朝上且以直線x=2為對稱軸的拋物線,
          故在區(qū)間(1,4)上,f(x)<f(4)=-2-a,
          若不等式x2-4x-2-a>0在區(qū)間(1,4)內(nèi)有解,
          則-2-a>0
          解得a<-2
          即實數(shù)a的取值范圍是a<-2,
          故選A
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          一根彈簧,掛的物體時,長20 cm.在彈性限度內(nèi),所掛物體的重量每增加,彈簧就伸長cm.試寫出彈簧的長度(cm)與所掛物體重量之間的關(guān)系的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分16分)  已知二次函數(shù)。 (1)若是否存在為正數(shù) ,若存在,證明你的結(jié)論,若不存在,說明理由;(2)若對有2個不等實根,證明必有一個根屬于(3)若,是否存在的值使=成立,若存在,求出的取值范圍,若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若函數(shù)f(x)=(a2+4a-5)x2-4(a-1)x+3的圖象恒在x軸上方,則a的取值范圍是( 。
          A.[1,+∞)B.(1,19)C.[1,19)D.(-1,19]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù)f(x)=x2-2x,g(x)=ax+2,對任意的x1∈[-1,2],都存在x0∈[-1,2],使得g(x1)=f(x0),則實數(shù)a的取值范圍是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)f(x)是定義在R上的偶函數(shù),且關(guān)于x的不等式f(x)<4x的解集為{x|1<x<3}.
          (Ⅰ)求f(x)的解析式;
          (Ⅱ)設(shè)F(x)=f(x)+bx,且當(dāng)x∈[-1,2]時,函數(shù)F(x)的最小值為1,求實數(shù)b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          附加題:是否存在一個二次函數(shù)f(x),使得對任意的正整數(shù)k,當(dāng)時,都有f(x)=成立?請給出結(jié)論,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)f(x)=x2-6x+10,x∈[1,a],且f(x)min=f(a),則a的取值范圍( 。
          A.1≤a≤3B.a(chǎn)≥3C.1<a≤3D.a(chǎn)≤6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          關(guān)于x的不等式x2-4mx+4≥0對任意x∈[1,+∞)恒成立,則實數(shù)m的取值范圍為______.

          查看答案和解析>>

          同步練習(xí)冊答案