日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點.

          (1)求證:平面PAB∥平面EFG;
          (2)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明;
          (3)求出D到平面EFG的距離.

          【答案】
          (1)證明:E,G分別是PC,BC的中點得EG∥PB

          ∴EG∥平面PAB

          又E,F(xiàn)分別是PC,PD的中點,

          ∴EF∥CD,又AB∥CD

          ∴EF∥AB

          ∵EFp平面PAB,AB平面PAB

          ∴EF∥平面PAB

          又∵EG,EF平面EFG,EG∩EF=E

          ∴平面PAB∥平面EFG


          (2)證明:Q為PB的中點,連QE,DE,又E是PC的中點,

          ∴QE∥BC,又BC∥AD∴QE∥AD

          ∴平面ADQ即平面ADEQ∴PD⊥DC,又PD=AB=2,ABCD是正方形,

          ∴等腰直角三角形PDC

          由E為PC的中點知DE⊥PC

          ∵PD⊥平面ABCD

          ∴PD⊥AD又AD⊥DC

          ∴AD⊥面PDC

          ∴AD⊥PC,且AD∩DE=D

          ∴PC⊥平面ADEQ,即證PC⊥平面ADQ


          (3)解:連DG,取AD中點H,連HG,HF,設(shè)點D到平面EFG的距離為h.H,G為AD,BC中點可知HG∥DC,又EF∥DC

          ∴HG∥EF

          ∴G到EF的距離即H到EF的距離

          ∵PD⊥DC,AD⊥DC

          ∴DC⊥面PAD,又EF∥DC

          ∴EF⊥面PAD

          ∴EF⊥HF

          ∴HF為G到EF的距離,由題意可知EF=1,HF= , =

          ∵AD⊥面PDC,GC∥AD

          ∴GC⊥面PDC

          ∴G到面EFD的距離為CG=1

          又可知EF=DF=1,


          【解析】(1)由已知可得EG∥PB,從而可證EG∥平面PAB,則只要再證明EF∥平面PAB,即證EF∥AB,結(jié)合已知容易證,根據(jù)平面與平面平行的判定定理可得(2)若使得PC⊥平面ADQ,即證明PC⊥平面ADE,當Q為PB的中點時,PC⊥Ae,AD⊥PC即可(3)結(jié)合已知可考慮利用換頂點VDEFG=VGEFD , 結(jié)合已知可求

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓O:x2+y2=2,直線l:y=kx﹣2.
          (1)若直線l與圓O交于不同的兩點A,B,且 ,求k的值;
          (2)若 ,P是直線l上的動點,過P作圓O的兩條切線PC,PD,切點分別為C,D,求證:直線CD過定點,并求出該定點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校為了支持生物課程基地研究植物生長,計劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長為x(m),三塊種植植物的矩形區(qū)域的總面積為S(m2).

          (1)求S關(guān)于x的函數(shù)關(guān)系式;
          (2)求S的最大值,及此時長X的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C經(jīng)過原點O,與x軸另一交點的橫坐標為4,與y軸另一交點的縱坐標為2,
          (1)求圓C的方程;
          (2)已知點B的坐標為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過兩直線3x+y﹣5=0,2x﹣3y+4=0的交點,且在兩坐標軸上截距相等的直線方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的焦點在x軸上,離心率等于 ,且過點(1, ). (Ⅰ)求橢圓C的標準方程;
          (Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A,B兩點,交y軸于M點,若 1 , 2 ,求證:λ12為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
          A.(1,+∞)
          B.(2,+∞)
          C.(﹣∞,0)
          D.(﹣∞,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系中,邊長為an的一組正三角形AnBn1Bn的底邊Bn1Bn依次排列在x軸上(B0與坐標原點重合).設(shè){an}是首項為a,公差為2的等差數(shù)列,若所有正三角形頂點An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若點( ,2)在冪函數(shù)f(x)的圖象上,點(2, )在冪函數(shù)g(x)的圖象上,定義h(x)= 求函數(shù)h(x)的最大值及單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊答案