日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F是側(cè)棱PD、PC的中點。
          (1)求證:平面PAB;
          (2)求直線PC與底面ABCD所成角的正切值。
          證明:(1)

          證明:(2)連結(jié)AC,因為PA平面ABCD,所以就為直線PC與平面ABCD所成的角。即  又因為正方形ABCD的邊長為2,所以AC=,
          所以
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,平面平面,四邊形是正方形,四邊形是矩形,且的中點,則與平面所成角的正弦值為(  。
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點.沿BD將△BCD翻折到△,使得平面⊥平面ABD.

          (Ⅰ)求證:平面ABD;
          (Ⅱ)求直線與平面所成角的正弦值;
          (Ⅲ)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在邊長為4的菱形中,.點分別在邊上,點與點不重合,.沿翻折到的位置,使平面平面
          (1)求證:平面;
          (2)設(shè)點滿足,試探究:當(dāng)取得最小值時,直線與平面所成角的大小是否一定大于?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖是一個水平放置的正三棱柱是棱的中點.正三棱柱的主視圖如圖

          (Ⅰ) 圖中垂直于平面的平面有哪幾個?(直接寫出符合要求的平面即可,不必說明或證明)
          (Ⅱ)求正三棱柱的體積;
          (Ⅲ)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,正四棱柱中,,點上且
          (1)證明:平面
          (2)求二面角的余弦值大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分)如圖7-15,在正三棱柱ABC—A1B1C1中,各棱長都等于a,D、E分別是AC1、BB1的中點,
          (1)求證:DE是異面直線AC1與BB1的公垂線段,并求其長度;
          (2)求二面角E—AC1—C的大;
          (3)求點C1到平面AEC的距離。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在棱長為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點
          (1)求直線AM和CN所成角的余弦值;
          (2)若P為B1C1的中點,求直線CN與平面MNP所成角的余弦值;
          (3)P為B1C1上一點,且,當(dāng) B1D⊥面PMN時,求的值.
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖直角梯形OABC中,,SO=1,以O(shè)C、OA、OS分別為x軸、y軸、z軸建立直角坐標(biāo)系O-xyz.
          (Ⅰ)求的大。ㄓ梅慈呛瘮(shù)表示);
          (Ⅱ)設(shè)

          ②OA與平面SBC的夾角(用反三角函數(shù)表示);
          ③O到平面SBC的距離.
          (Ⅲ)設(shè)
                     
          ②異面直線SC、OB的距離為              .
          (注:(Ⅲ)只要求寫出答案).

          查看答案和解析>>

          同步練習(xí)冊答案