【題目】以下四個(gè)命題: ①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2a﹣b>1”的充分不必要條件;
③函數(shù)f(x)= ﹣(
)x的零點(diǎn)個(gè)數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號(hào)為 .
【答案】②③
【解析】解:①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a, 則P(X>2)= (1﹣P(|X|<2))=
,故①錯(cuò);②設(shè)a、b∈R,log2a>log2ba>b>0a﹣b>02a﹣b>1,由于a﹣b>0,a,b不一定大于0,
則“l(fā)og2a>log2b”是“2a﹣b>1”的充分不必要條件,故②對(duì);③由y= 和y=(
)x的圖象,可得它們只有一個(gè)交點(diǎn),
即函數(shù)f(x)= ﹣(
)x的零點(diǎn)個(gè)數(shù)為1,故③對(duì);④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n<n2+1.故④錯(cuò).
所以答案是:②③.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 底面
為菱形,平面
平面
,
,
,
,
為
的中點(diǎn).
(1)證明: ;
(2)二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線 的焦點(diǎn),斜率為
的直線交拋物線于
,
(
)兩點(diǎn),且
.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),
為拋物線上一點(diǎn),若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且a2=3b2+3c2﹣2 bcsinA,則C的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了場(chǎng)比賽,比賽得分情況如下(單位:分)
甲:
乙:
(1)根據(jù)得分情況記錄,作出兩名籃球運(yùn)動(dòng)員得分的莖葉圖,并根據(jù)莖葉圖,對(duì)甲、乙兩運(yùn)動(dòng)員得分作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)甲籃球運(yùn)動(dòng)員場(chǎng)比賽得分平均值
,將
場(chǎng)比賽得分
依次輸入如圖所示的程序框圖進(jìn)行運(yùn)算,問輸出的
大小為多少?并說明
的統(tǒng)計(jì)學(xué)意義;
(3)如果從甲、乙兩位運(yùn)動(dòng)員的場(chǎng)得分中,各隨機(jī)抽取一場(chǎng)不少于
分的得分,求甲的得分大于乙的得分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,微信越來越受歡迎,許多人通過微信表達(dá)自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗(yàn),支付環(huán)節(jié)由此變得簡(jiǎn)便而快捷.某商場(chǎng)隨機(jī)對(duì)商場(chǎng)購(gòu)物的100名顧客進(jìn)行統(tǒng)計(jì),其中40歲以下占 ,采用微信支付的占
,40歲以上采用微信支付的占
.
(Ⅰ)請(qǐng)完成下面2×2列聯(lián)表:
40歲以下 | 40歲以上 | 合計(jì) | |
使用微信支付 | |||
未使用微信支付 | |||
合計(jì) |
并由列聯(lián)表中所得數(shù)據(jù)判斷有多大的把握認(rèn)為“使用微信支付與年齡有關(guān)”?
(Ⅱ)若以頻率代替概率,采用隨機(jī)抽樣的方法從“40歲以下”的人中抽取2人,從“40歲以上”的人中抽取1人,了解使用微信支付的情況,問至少有一人使用微信支付的概率為多少?
參考公式: ,n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.760 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某淘寶商城在2017年前7個(gè)月的銷售額 (單位:萬元)的數(shù)據(jù)如下表,已知
與
具有較好的線性關(guān)系.
(1)求關(guān)于
的線性回歸方程;
(2)分析該淘寶商城2017年前7個(gè)月的銷售額的變化情況,并預(yù)測(cè)該商城8月份的銷售額.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若函數(shù)在區(qū)間
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時(shí),若對(duì)任意的
,總存在
使
成立,求實(shí)數(shù)
的取值范圍;
(3)若的值域?yàn)閰^(qū)間
,是否存在常數(shù)
,使區(qū)間
的長(zhǎng)度為
?若存在,求出
的值,若不存在,請(qǐng)說明理由.(柱:區(qū)間
的長(zhǎng)度為
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,
,
為數(shù)列
的前
項(xiàng)和,向量
,
,
.
(1)若,求數(shù)列
通項(xiàng)公式;
(2)若,
.
①證明:數(shù)列為等差數(shù)列;
②設(shè)數(shù)列滿足
,問是否存在正整數(shù)
,
,且
,
,使得
、
、
成等比數(shù)列,若存在,求出
、
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com