日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道分成面積之比為的兩部分(點DE分別在邊上);再取的中點M,建造直道(如圖).,,(單位:百米).

          1)分別求,關于x的函數(shù)關系式;

          2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.

          【答案】1,.,.

          2)當百米時,兩條直道的長度之和取得最小值百米.

          【解析】

          1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數(shù)關系式;在中,利用余弦定理,可得關于x的函數(shù)關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.2)由(1)和基本不等式,計算即得.

          解:(1,是邊長為3的等邊三角形,又,

          .

          ,得.

          1:在中,由余弦定理,得

          .

          故直道長度關于x的函數(shù)關系式為,.

          中,由余弦定理,得

          因為M的中點,所以.

          由①②,得,

          所以,所以.

          所以,直道長度關于x的函數(shù)關系式為

          .

          2:因為在中,,

          所以.

          所以,直道長度關于x的函數(shù)關系式為.

          中,因為M的中點,所以.

          所以.

          所以,直道長度關于x的函數(shù)關系式為,.

          2)由(1)得,兩條直道的長度之和為

          (當且僅當時取.

          故當百米時,兩條直道的長度之和取得最小值百米.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓,離心率為,直線恒過的一個焦點.

          1)求的標準方程;

          2)設為坐標原點,四邊形的頂點均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線的圖象經(jīng)過點.

          (1)求拋物線的方程和焦點坐標;

          (2)直線交拋物線不同兩點,且位于軸兩側(cè),過點,分別作拋物線的兩條切線交于點,直線,軸的交點分別記作.記的面積為,面積為,面積為,試問是否為定值,若是,請求出該定值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某網(wǎng)絡商城在日開展慶元旦活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.

          1)求抽取的這家店鋪,元旦當天銷售額的平均值;

          2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;

          3)為了了解抽取的各店鋪的銷售方案,銷售額在的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在各一個的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰(zhàn)“疫”進行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強戰(zhàn)勝疫情的信心. 為了檢驗大家對新冠狀病毒及防控知識的了解程度,該市推出了相關的知識問卷,隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關知識了解全面,“中老年人”中對防控的相關知識了解全面和不夠全面的人數(shù)之比是2:1.

          1)求圖中的值;

          2)現(xiàn)采取分層抽樣在中隨機抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?

          3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計結(jié)果判斷:能夠有99.9%的把握認為“中老年人”比“青少年人”更加了解防控的相關知識?

          了解全面

          了解不全面

          合計

          青少年人

          中老年人

          合計

          附表及公式:,其中

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在多面體ABCDPE中,四邊形ABCD是直角梯形,,平面平面,,,的余弦值為,FBE中點,GPD中點.

          1)求證:平面ABCD;

          2)求平面BCE與平面ADE所成角(銳角)的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動圓M過點且與直線相切.

          (1)求動圓圓心M的軌跡C的方程;

          (2)斜率為的直線l經(jīng)過點且與曲線C交于AB兩點,線段AB的中垂線交x軸于點N,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左,右焦點分別為,,M是橢圓E上的一個動點,且的面積的最大值為.

          1)求橢圓E的標準方程,

          2)若,,四邊形ABCD內(nèi)接于橢圓E,記直線ADBC的斜率分別為,,求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)的最小正周期為4,其圖象關于直線對稱,給出下面四個結(jié)論:

          ①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個單位后得到的圖象關于原點對稱;③點是函數(shù)圖象的一個對稱中心;④函數(shù)上的最大值為1.其中正確的是( )

          A. ①② B. ③④ C. ①③ D. ②④

          查看答案和解析>>

          同步練習冊答案