日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了解學(xué)生的課外閱讀時(shí)間情況,某學(xué)校隨機(jī)抽取了50人進(jìn)行統(tǒng)計(jì)分析,把這50人每天閱讀的時(shí)間(單位:分鐘)繪制成頻數(shù)分布表,如下表所示:

          閱讀時(shí)間

          [0,20)

          [20,40)

          [40,60)

          [60,80)

          [80,100)

          [100,120]

          人數(shù)

          8

          10

          12

          11

          7

          2

          若把每天閱讀時(shí)間在60分鐘以上(含60分鐘)的同學(xué)稱為閱讀達(dá)人,根據(jù)統(tǒng)計(jì)結(jié)果中男女生閱讀達(dá)人的數(shù)據(jù),制作出如圖所示的等高條形圖.

          (1)根據(jù)抽樣結(jié)果估計(jì)該校學(xué)生的每天平均閱讀時(shí)間(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作為代表);

          (2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為閱讀達(dá)人跟性別有關(guān)?

          男生

          女生

          總計(jì)

          閱讀達(dá)人

          非閱讀達(dá)人

          總計(jì)

          附:參考公式,其中n=a+b+c+d.

          臨界值表:

          P(K2k)

          0.100

          0.050

          0.010

          0.001

          k

          2.706

          3.841

          6.635

          10.828

          【答案】(1)52分;

          (2) 沒(méi)有99%的把握認(rèn)為閱讀達(dá)人跟性別有關(guān).

          【解析】

          (1)由題意求出該校學(xué)生的每天平均閱讀時(shí)間;
          (2)由頻數(shù)分布表結(jié)合等高條形圖作出列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論.

          (1)該校學(xué)生的每天平均閱讀時(shí)間為:

          =1.6+6+12+15.4+12.6+4.4

          =52(分);

          (2)由頻數(shù)分布表得,閱讀達(dá)人的人數(shù)是11+7+2=20人,

          根據(jù)等高條形圖作出2×2列聯(lián)表如下:

          男生

          女生

          總計(jì)

          閱讀達(dá)人

          6

          14

          20

          非閱讀達(dá)人

          18

          12

          30

          總計(jì)

          24

          26

          50

          計(jì)算,

          由于4.3276.635,故沒(méi)有99%的把握認(rèn)為閱讀達(dá)人跟性別有關(guān).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

          (1)求曲線的極坐標(biāo)方程;

          (2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

          【答案】(1);(2)

          【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,

          ,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得

          可得曲線C的極坐標(biāo)方程.

          (2)由(1)不妨設(shè)M(),,(),

          ,

          ,

          由此可求面積的最大值.

          試題解析:(1)由題意可知直線的直角坐標(biāo)方程為

          曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

          所以曲線C的極坐標(biāo)方程為,

          .

          (2)由(1)不妨設(shè)M(),,(),

          ,

          ,

          當(dāng) 時(shí), ,

          所以△MON面積的最大值為.

          型】解答
          結(jié)束】
          23

          【題目】已知函數(shù)的定義域?yàn)?/span>;

          (1)求實(shí)數(shù)的取值范圍;

          (2)設(shè)實(shí)數(shù)的最大值,若實(shí)數(shù), 滿足,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一同學(xué)在電腦中打出若干個(gè)圈:○●○○●○○○●○○○○●○○○○○●若將此若干個(gè)圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個(gè)圈中的●的個(gè)數(shù)是 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)f(x)=|x﹣1|+|x+1|.
          (1)求f(x)≤x+2的解集;
          (2)若不等式f(x)≥ 對(duì)任意實(shí)數(shù)a≠0恒成立,求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)的定義域?yàn)?/span>D,若存在閉區(qū)間,使得函數(shù)滿足:①內(nèi)是單調(diào)函數(shù);②上的值域?yàn)?/span>,則稱區(qū)間倍值區(qū)間”.下列函數(shù)中存在倍值區(qū)間的有_______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上單調(diào)遞增,q:m≥﹣5,則p是q的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛(ài)足球運(yùn)動(dòng)是否與性別有關(guān),某體育臺(tái)隨機(jī)抽取100名觀眾進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表.

          (1)將列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜愛(ài)足球運(yùn)動(dòng)與性別有關(guān)?

          (2)在不喜愛(ài)足球運(yùn)動(dòng)的觀眾中,按性別分別用分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人參加一臺(tái)訪談節(jié)目,求這2人至少有一位男性的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過(guò)點(diǎn)A作⊙O的切錢EP交CB 的延長(zhǎng)線于P,己知∠PAB=25°.

          (1)若BC是⊙O的直徑,求∠D的大;
          (2)若∠DAE=25°,求證:DA2=DCBP.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
          (1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
          (2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點(diǎn)恰有兩個(gè),且落在區(qū)間[0,1),(1,2]內(nèi)各一個(gè),求a﹣b的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案