【題目】2018年雙11當天,某購物平臺的銷售業(yè)績高達2135億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系,現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.9,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為140次.
(1)請完成下表,并判斷是否可以在犯錯誤概率不超過0.5%的前提下,認為商品好評與服務(wù)好評有關(guān)?
對服務(wù)好評 | 對服務(wù)不滿意 | 合計 | |
對商品好評 | 140 | ||
對商品不滿意 | 10 | ||
合計 | 200 |
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為X.
①求隨機變量X的分布列;
②求X的數(shù)學期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)詳見解析(2)①詳見解析②,
【解析】
(1)補充列聯(lián)表,根據(jù)公式計算卡方值,進行判斷;(2)(。┟看钨徫飼r,對商品和服務(wù)都好評的概率為,且X的取值可以是0,1,2,3,x符合二項分布,按照二項分布的公式進行計算即可得到相應(yīng)的概率值;(ⅱ)按照二項分布的期望和方差公式計算即可.
(1)由題意可得關(guān)于商品和服務(wù)評價的2×2列聯(lián)表:
對服務(wù)好評 | 對服務(wù)不滿意 | 合計 | |
對商品好評 | 140 | 40 | 180 |
對商品不滿意 | 10 | 10 | 20 |
合計 | 150 | 50 | 200 |
則.
由于7.407<7.879,則不可以在犯錯誤概率不超過0.5%的前提下,認為商品好評與服務(wù)好評有關(guān).
(2)(ⅰ)每次購物時,對商品和服務(wù)都好評的概率為,
且X的取值可以是0,1,2,3,
則,
,
,
.
故X的分布列為
X | 0 | 1 | 2 | 3 |
P |
(ⅱ)由于X~B(3,),則
,
.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于點
,若函數(shù)
滿足:
,都有
,就稱這個函數(shù)是點
的“限定函數(shù)”.以下函數(shù):①
,②
,③
,④
,其中是原點
的“限定函數(shù)”的序號是______.已知點
在函數(shù)
的圖象上,若函數(shù)
是點
的“限定函數(shù)”,則
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點及圓
:
.
(1)若直線過點
且與圓心
的距離為
,求直線
的方程.
(2)設(shè)直線與圓
交于
,
兩點,是否存在實數(shù)
,使得過點
的直線
垂直平分弦
?若存在,求出實數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R
(1)求A∪B;
(2)若,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)n是一個正整數(shù),定義n個實數(shù)a1,a2,…,an的算術(shù)平均值為.設(shè)集合 M={1,2,3,…,2015},對 M的任一非空子集 Z,令αz表示 Z中最大數(shù)與最小數(shù)之和,那么所有這樣的αz的算術(shù)平均值為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校研究性學習小組從汽車市場上隨機抽取輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于
公里和
公里之間,將統(tǒng)計結(jié)果分成
組:
,
,
,
,
,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求續(xù)駛里程在的車輛數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取
輛車,求其中恰有一輛車的續(xù)駛里程在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的非負半軸為極軸取相同的長度單位建立極坐標系,曲線
的參數(shù)方程為
(
為參數(shù),
),直線
的極坐標方程為
.
(1)寫出曲線的普通方程和直線
的直角坐標方程;
(2)若為曲線
上任意一點,
為直線
任意一點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域
內(nèi)存在
,使函數(shù)
成立;
(1)請給出一個的值,使函數(shù)
(2)函數(shù)是否是集合M中的元素?若是,請求出所有
組成的集合;若不是,請說明理由;
(3)設(shè)函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知 為橢圓
的左焦點,且橢圓
過
.
(Ⅰ)求橢圓的方程;
(Ⅱ) 是否存在平行四邊形 ,同時滿足下列兩個條件:
①點在直線
上;②點
在橢圓
上且直線
的斜率等于1.如果存在,求出
點坐標;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com