日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知離心率為的橢圓的中心在原點,焦點在x軸上.雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2.求橢圓及雙曲線的方程.

          【解析】 設(shè)橢圓方程為=1(a>b>0)

          則根據(jù)題意,雙曲線的方程為

          =1且滿足

          解方程組得

          ∴橢圓的方程為=1,雙曲線的方程=1

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

           . 已知離心率為的橢圓的右焦點是圓的圓心,過橢圓上的動點P作圓的兩條切線分別交軸于M、N兩點.

          (I)求橢圓的方程;

          (II)求線段MN長的最大值,并求此時點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林十八中高三第二次月考試卷理科數(shù)學(xué) 題型:解答題

          (本小題滿分12分)已知離心率為的橢圓上的點到

           

          左焦點的最長距離為

          (1)求橢圓的方程;

          (2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

           

                                                                

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年廣東省華南師大附中高三周六自測數(shù)學(xué)試卷1(文科)(解析版) 題型:解答題

          已知離心率為的橢圓C的中心在坐標原點O,一焦點坐標為(1,0),圓O的方程為x2+y2=7.
          (1)求橢圓C的方程,并證明橢圓C在圓O內(nèi);
          (2)過橢圓C上的動點P作互相垂直的兩條直線l1,l2,l1與圓O相交于點A,C,l2與圓O相交于點B,D(如圖),求四邊形ABCD的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年福建省廈門市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知離心率為的橢圓的右焦點F是圓(x-1)2+y2=1的圓心,過橢圓上的動點P作圓的兩條切線分別交y軸于M、N兩點.
          (1)求橢圓的方程;
          (2)求線段MN長的最大值,并求此時點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣西桂林十八中2011-2012學(xué)年高三第二次月考試題數(shù)學(xué)理 題型:解答題

           

               已知離心率為的橢圓上的點到左焦點的最長距離為

          (1)求橢圓的方程;

          (2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

                                                                 

           

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊答案