日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•張掖模擬)在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.且
          a-c
          b-c
          =
          sinB
          sinA+sinC

          (1)求角A的大小及角B的取值范圍;
          (2)若a=
          3
          ,求b2+c2的取值范圍.
          分析:(1)利用正弦定理,將
          a-c
          b-c
          =
          sinB
          sinA+sinC
          中的角化為邊,得b2+c2-a2=bc,再利用余弦定理即可得角A,再由三角形ABC為銳角三角形,求得角B的取值范圍;
          (2)利用正弦定理將b2+c2轉(zhuǎn)化為三角函數(shù),再利用三角變換公式將函數(shù)化為y=Asin(ωx+φ)型函數(shù),再利用(1)中角B的取值范圍求函數(shù)值域即可
          解答:解:(1)由
          a-c
          b-c
          =
          sinB
          sinA+sinC
          a-c
          b-c
          =
          b
          a+c
          即b2+c2-a2=bc
          cosA=
          b2+c2-a2
          2bc
          =
          1
          2
          ,A∈(0,
          π
          2

          A=
          π
          3

          又∵△ABC是銳角三角形,∴
          π
          2
          <B+A
          ,即
          π
          2
          <B+
          π
          3
          ,得B>
          π
          6

          π
          6
          <B<
          π
          2

          (2)由
          a
          sinA
          =2R
          ,得2R=
          3
          sin
          π
          3
          =2
          ,∴b=2sinB,c=2sinC
          B+C=
          3
          ,∴C=
          3
          -B

          ∴b2+c2=4(sin2B+sin2C)=2(1-cos2B+1-cos2C)=4-2(cos2B+cos2C)=4-2[cos2B+cos(
          3
          -2B)]
          =4-2(
          1
          2
          cos2B-
          3
          2
          sin2B)
          =4-2cos(2B+
          π
          3
          )

          π
          6
          <B<
          π
          2
          ,∴
          3
          <2B+
          π
          3
          3

          ∴當(dāng)2B+
          π
          3
          時,即B=
          π
          3
          時,b2+c2取得最大值6.
          當(dāng)2B+
          π
          3
          =
          3
          時,即B=
          π
          2
          時,b2+c2取得最小值5.
          故所求b2+c2的取值范圍是(5,6].
          點評:本題主要考查了正弦定理和余弦定理的應(yīng)用,三角函數(shù)的值域的求法,利用定理實現(xiàn)邊角間的互化是解決本題的關(guān)鍵,
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•張掖模擬)在2010年某大學(xué)的小語種提前招生考試中,某中學(xué)共獲得了5個推薦名額,其中俄語2名,日語2名,西班牙語1名,并且日語和俄語都要求必須有男生參加考試.學(xué)校通過選拔定下3男2女五個推薦對象,則不同的推薦方案共有( 。┓N.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•張掖模擬)二項式(2
          x
          -
          1
          x
          )6
          展開式中含x2項的系數(shù)是
          -192
          -192

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•張掖模擬)函數(shù)f(x)=x2+bx的圖象在點A(1,f(1))處的切線與直線3x-y+2=0平行,若數(shù)列{
          1
          f(n)
          }的前n項和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•張掖模擬)已知函數(shù)y=f(x)的圖象與函數(shù)y=2x+1(x>0)的圖象關(guān)于直線y=x對稱,則( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•張掖模擬)已知Sn是等差數(shù)列{an}的前n項和,且S1008=4+S1004,則S2012的值為( 。

          查看答案和解析>>

          同步練習(xí)冊答案