已知函數(shù)且
(Ⅰ)試用含的代數(shù)式表示
;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)
在
處取得極值,記點(diǎn)
,證明:線段
與曲線
存在異于
、
的公共點(diǎn);
(Ⅰ);(Ⅱ)當(dāng)
時,函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
;當(dāng)
時,函數(shù)
的單調(diào)增區(qū)間為R;當(dāng)
時,函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
(Ⅲ)易得,而
的圖像在
內(nèi)是一條連續(xù)不斷的曲線,
故在
內(nèi)存在零點(diǎn)
,這表明線段
與曲線
有異于
的公共點(diǎn)
【解析】
試題分析:解法一:(Ⅰ)依題意,得
由得
(Ⅱ)由(Ⅰ)得
故
令,則
或
①當(dāng)時,
當(dāng)變化時,
與
的變化情況如下表:
|
|
|
|
|
+ |
— |
+ |
|
單調(diào)遞增 |
單調(diào)遞減 |
單調(diào)遞增 |
由此得,函數(shù)的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
②由時,
,此時,
恒成立,且僅在
處
,故函數(shù)
的單調(diào)區(qū)間為R
③當(dāng)時,
,同理可得函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
綜上:
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
;
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間為R;
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
(Ⅲ)當(dāng)時,得
由,得
由(Ⅱ)得的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
所以函數(shù)在
處取得極值。
故
所以直線的方程為
由得
令
易得,而
的圖像在
內(nèi)是一條連續(xù)不斷的曲線,
故在
內(nèi)存在零點(diǎn)
,這表明線段
與曲線
有異于
的公共點(diǎn)
解法二:
(Ⅲ)當(dāng)時,得
,由
,得
由(Ⅱ)得的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
,所以函數(shù)
在
處取得極值,
故
所以直線的方程為
由得
解得
所以線段與曲線
有異于
的公共點(diǎn)
。
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:本題是在知識的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識.導(dǎo)數(shù)題目是高考的必考題,且?汲P,但是無論如何少不了對基礎(chǔ)知識的考查,因此備考中要強(qiáng)化基礎(chǔ)題的訓(xùn)練.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年福建卷理)(本小題滿分14分)已知函數(shù)
(Ⅰ)若,試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分15分)已知函數(shù)
且
.
(Ⅰ)試用含式子表示
;(Ⅱ)求
的單調(diào)區(qū)間;(Ⅲ)若
,試求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第二次(3月)周測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) .
(Ⅰ)若,試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若且對任意
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省高二下學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆內(nèi)蒙古巴彥淖爾市中學(xué)高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=1 .
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)若 ,且f(x)在區(qū)間[1,3]上的最大值為M(a) ,最小值為N(a),
令g(a)= M(a)-N(a),求 g(a)的表達(dá)式,試求g(a)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com