【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)),
=(cosB,sinB),若
=﹣
. (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量
在
方向上的投影.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【河北省衡水中學(xué)2017屆高三上學(xué)期五調(diào)】已知橢圓,圓
的圓心
在橢圓
上,點(diǎn)
到橢圓
的右焦點(diǎn)的距離為
.
(1)求橢圓的方程;
(2)過點(diǎn)作互相垂直的兩條直線
,且
交橢圓
于
兩點(diǎn),直線
交圓
于
兩點(diǎn),且
為
的中點(diǎn),求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線
(
為參數(shù)),將
上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的
和
倍后得到曲線
.以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線
.
(1)試寫出曲線的極坐標(biāo)方程與曲線
的參數(shù)方程;
(2)在曲線上求一點(diǎn)
,使點(diǎn)
到直線
的距離最小,并求此最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
,
平面
,
.
(1)設(shè)點(diǎn)為
的中點(diǎn),求證:
平面
;
(2)線段上是否存在一點(diǎn)
,使得直線
與平面
所成的角
的正弦值為
?若存在,試確定點(diǎn)
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓
的左、右焦點(diǎn)分別為
上頂點(diǎn)為
,右頂點(diǎn)為
,以
為直徑的圓
過點(diǎn)
,直線
與圓
相交得到的弦長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓
相交于
兩點(diǎn),
與
軸,
軸分別相交于
兩點(diǎn),滿足:①記
的中點(diǎn)為
,且
兩點(diǎn)到直線
的距離相等;②記
的面積分別為
若
當(dāng)
取得最大值時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
經(jīng)過橢圓
:
的左右焦點(diǎn)
,且與橢圓
在第一象限的交點(diǎn)為
,且
三點(diǎn)共線,直線
交橢圓
于
,
兩點(diǎn),且
(
).
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an},a1=1,an+1= +
,數(shù)列{bn},bn=2n﹣1an .
(1)求證:數(shù)列{bn}為等差數(shù)列,并求出{bn}的通項(xiàng)公式;
(2)數(shù)列{an}的前n項(xiàng)和為Sn , 求Sn;
(3)正數(shù)數(shù)列{dn}滿足 =
.設(shè)數(shù)列{dn}的前n項(xiàng)和為Dn , 求不超過D100的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x2+mx+1=0有兩個(gè)不等的負(fù)根;命題q:4x2+4(m﹣2)x+1=0無實(shí)根.若命題p與命題q有且只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com