日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,所在平面互相垂直,且,,E、F、G分別為AC、DC、AD的中點(diǎn).
          (1)求證:平面BCG;
          (2)求三棱錐D-BCG的體積.
          附:椎體的體積公式,其中S為底面面積,h為高.

          (1)詳見解析;(2)

          解析試題分析:(1)由已知得,的中位線,故,則可轉(zhuǎn)化為證明平面BCG.易證,則有,則在等腰三角形和等腰三角形中,且中點(diǎn),故,.從而平面BCG,進(jìn)而平面BCG;(2)求四面體體積,為了便于計(jì)算底面積和高,往往可采取等體積轉(zhuǎn)化法.由平面平面,利用面面垂直的性質(zhì),易作出面的垂線,同時求出點(diǎn)到面的距離,從而可求出點(diǎn)到平面距離,即四面體的高,進(jìn)而求四面體體積.
          (1)證明:由已知得.因此.又中點(diǎn),所以;同理;因此平面.又.所以平面BCG.
          (2)在平面內(nèi).作.交延長線于.由平面平面.知平面
          中點(diǎn),因此到平面距離長度的一半.在中,
          所以

          考點(diǎn):1、直線和平面垂直的判定;2、面面垂直的性質(zhì);3、四面體的體積.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,點(diǎn)為斜三棱柱的側(cè)棱上一點(diǎn),于點(diǎn)于點(diǎn).

          (1) 求證:;
          (2) 在任意中有余弦定理:.
          拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個側(cè)面面積與其中兩個側(cè)面所成的二面角之間的關(guān)系式,并予以證明

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在三棱錐中,點(diǎn)分別是棱的中點(diǎn). 
          (1)求證://平面;
          (2)若平面平面,,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,正方體ABCD-A1B1C1D1中,側(cè)面對角線AB1,BC1上分別有兩點(diǎn)E,F(xiàn),且B1E=C1F.求證:EF∥平面ABCD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
          (1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
          (2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
          (3)求幾何體ABCDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),
          (1)證明:;
          (2)證明:;
          (3)假設(shè)這是個大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會有被捕的危險(xiǎn),求魚被捕的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面 ,的中點(diǎn),作于點(diǎn)
          (1)求證:平面;
          (2)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在三棱柱中,側(cè)棱垂直底面,,
          (1)求證:;
          (2)求二面角的大小。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (2013•浙江)如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC上的點(diǎn).
          (Ⅰ)證明:BD⊥平面PAC;
          (Ⅱ)若G是PC的中點(diǎn),求DG與PAC所成的角的正切值;
          (Ⅲ)若G滿足PC⊥面BGD,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案