日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,點(diǎn)為斜三棱柱的側(cè)棱上一點(diǎn),于點(diǎn)于點(diǎn).

          (1) 求證:;
          (2) 在任意中有余弦定理:.
          拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明

          (1)見解析 (2) 見解析

          解析試題分析:(1)由題意和三棱柱的性質(zhì),證出 CC1⊥平面PMN,再證 CC1⊥MN.
          (2)利用類比推理邊“對應(yīng)側(cè)面面積”得出結(jié)論,證明用到余弦定理平行四邊形的面積公式和題中的垂直關(guān)系.
          試題解析:(1) 證:;(4分)
          (2) 解:在斜三棱柱中,有,其中為平面與平面所組成的二面角.上述的二面角為,在中,
          ,
          由于,
          ∴有(12分)
          考點(diǎn):空間中直線與直線之間的位置關(guān)系;歸納推理.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          如圖所示的幾何體中,四邊形ABCD是等腰梯形,AD//CD, ,F(xiàn)C 平面ABCD, AE BD,CB =CD=-CF.
           
          (Ⅰ)求證:平面ABCD 平面AED;
          (Ⅱ)直線AF與面BDF所成角的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在直三棱柱中,,分別為的中點(diǎn).

          (1)求證:平面;(5分)
          (2)求三棱錐的體積.(7分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,邊長為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點(diǎn)為M,,且AC=BC.
          (1)求證:平面EBC;
          (2)求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形,,,,
          (1)求證平面;(2)求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐中,底面是矩形,平面,,,依次是的中點(diǎn).

          (1)求證:;
          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,所在平面互相垂直,且,E、F、G分別為AC、DC、AD的中點(diǎn).
          (1)求證:平面BCG;
          (2)求三棱錐D-BCG的體積.
          附:椎體的體積公式,其中S為底面面積,h為高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          點(diǎn)直線的距離是   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          已知中,,它所在平面外一點(diǎn)三個(gè)頂點(diǎn)的距離都是14,那么到平面的距離是          

          查看答案和解析>>

          同步練習(xí)冊答案