日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 研究性學(xué)習(xí)小組為了解某生活小區(qū)居民用水量(噸)與氣溫(℃)之間的關(guān)系,隨機統(tǒng)計并制作了5天該小區(qū)居民用水量與當(dāng)天氣溫的對應(yīng)表:

          日期
          9月5日
          10月3日
          10月8日
          11月16日
          12月21日
          氣溫(℃)
          18
          15
          11
          9
          -3
          用水量(噸)
          57
          46
          36
          37
          24
          (1)若從這隨機統(tǒng)計的5天中任取2天,求這2天中有且只有1天用水量低于40噸的概率(列出所有的基本事件);
          (2)由表中數(shù)據(jù)求得線性回歸方程中的,試求出的值,并預(yù)測當(dāng)?shù)貧鉁貫?℃時,該生活小區(qū)的用水量.

          (1)(2)33噸

          解析試題分析:(1)首先列出全部的基本事件,確定“2天中有且只有1天用水量低于40噸”的包含的基本事件的個數(shù),根據(jù)古典概型求出其概率值;
          (2)利用問題中所給的數(shù)據(jù),求出,得樣本中心點,由于回歸直線一定過樣本中心點,可由解得的值,而確定線性回歸方程,把代入所得回歸方程就可求得相應(yīng)的,這就是用線性回歸方程預(yù)測當(dāng)?shù)貧鉁貫?℃時,該生活小區(qū)的用水量.
          試題解析:解:(1)設(shè)在抽樣的5天中用水量低于40噸的三天為,用水量不低于40噸的兩天為,那么5天任取2天的基本事件是:,,,,,,,共計10個.         3分
          設(shè)“從5天中任取2天,有且只有1天用水量低于40噸”為事件,包括的基本事件為,,,,共6個,  5分
          .
          ∴從5天中任取2天,有且只有1天用水量低于40噸的概率為.      7分
          (學(xué)生由列表或畫樹狀圖得出20個基本事件,并由此得出正確結(jié)論得滿分;沒有列出基本事件且結(jié)論正確給3分)
          (2)依題意可知
          ,
          ,                   9分
          ∵線性回歸直線過點,且,
          ∴把點代入直線方程,得,                11分

          時,
          ∴可預(yù)測當(dāng)?shù)貧鉁貫?℃時,居民生活用水量為33噸.           13分
          考點:1、古典概型;2、線性回歸方程.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某班共有學(xué)生40人,將以此數(shù)學(xué)考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.

          (1)請根據(jù)圖中所給的數(shù)據(jù),求a的值;
          (2)從成績在[50,70)內(nèi)的學(xué)生中隨機選3名學(xué)生,求這3名學(xué)生的成績都在[60,70)內(nèi)的概率;
          (3)為了了解學(xué)生這次考試的失分情況,從成績在[50,70)內(nèi)的學(xué)生中隨機選取3人的成績進(jìn)行分析,用X表示所選學(xué)生成績在[60,70)內(nèi)的人數(shù),求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖是總體的一個樣本頻率分布直方圖,且在區(qū)間[15,18)內(nèi)的頻數(shù)為8.

          (1)求樣本容量;
          (2)若在[12,15)內(nèi)的小矩形的面積為0.06,
          ①求樣本在[12,15)內(nèi)的頻數(shù);
          ②求樣本在[18,33)內(nèi)的頻率。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          有7位歌手(1至7號)參加一場歌唱比賽,由500名大眾評委現(xiàn)場投票決定歌手名次.根據(jù)年齡將大眾評委分為五組,各組的人數(shù)如下:

          組別
          A
          B
          C
          D
          E
          人數(shù)
          50
          100
          150
          150
          50
          (1)為了調(diào)查評委對7位歌手的支持狀況,現(xiàn)用分層抽樣方法從各組中抽取若干評委,其中從B組抽取了6人.請將其余各組抽取的人數(shù)填入下表.
          組別
          A
          B
          C
          D
          E
          人數(shù)
          50
          100
          150
          150
          50
          抽取人數(shù)
           
          6
           
           
           
          (2)在(1)中,若A,B兩組被抽到的評委中各有2人支持1號歌手,現(xiàn)從這兩組被抽到的評委中分別任選1人,求這2人都支持1號歌手的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某單位最近組織了一次健身活動,參加活動的職工分為登山組和游泳組,且每個職工至多參加其中一組.在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山組的職工占參加活動總?cè)藬?shù)的,且該組中青年人占50%,中年人占40%,老年人占10%.為了了解各組中不同年齡層次的職工對本次活動的滿意程度,現(xiàn)用分層抽樣的方法從參加活動的全體職工中抽取一個容量為200的樣本.試確定
          (1)游泳組中青年人、中年人、老年人分別所占的比例.
          (2)游泳組中青年人、中年人、老年人分別應(yīng)抽取的人數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某高校組織自主招生考試,共有2 000名優(yōu)秀同學(xué)參加筆試,成績均介于195分到275分之間,從中隨機抽取50名同學(xué)的成績進(jìn)行統(tǒng)計,將統(tǒng)計結(jié)果按如下方式分成8組:第1組[195,205),第2組[205,215),…,第8組[265,275].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在260分(含260分)以上的同學(xué)進(jìn)入面試.

          (1)估計所有參加筆試的2 000名同學(xué)中,參加面試的同學(xué)人數(shù);
          (2)面試時,每位同學(xué)抽取兩個問題,若兩個問題全答錯,則不能取得該校的自主招生資格;若兩個問題均回答正確且筆試成績在270分以上,則獲A類資格;其他情況下獲B類資格.現(xiàn)已知某中學(xué)有兩人獲得面試資格,且僅有一人筆試成績?yōu)?70分以上,在回答兩個面試問題時,兩人對每一個問題正確回答的概率均為,求恰有一名同學(xué)獲得該高校B類資格的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在某次測驗中,有6位同學(xué)的平均成績?yōu)?5分.用表示編號為)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?0,76,72,70,72.
          (1)求第6位同學(xué)的成績,及這6位同學(xué)成績的標(biāo)準(zhǔn)差;
          (2)從前5位同學(xué)中,隨機地選2位同學(xué),求恰有1位同學(xué)成績在區(qū)間(68,75)中的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時間,隨機對100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計結(jié)果:
          表1:男生上網(wǎng)時間與頻數(shù)分布表

          上網(wǎng)時間(分鐘)
          [30,40)
          [40,50)
          [50,60)
          [60,70)
          [70,80]
          人數(shù)
          5
          25
          30
          25
          15
          表2:女生上網(wǎng)時間與頻數(shù)分布表
          上網(wǎng)時間(分鐘)
          [30,40)
          [40,50)
          [50,60)
          [60,70)
          [70,80]
          人數(shù)
          10
          20
          40
          20
          10
          (1)從這100名男生中任意選出3人,求其中恰有1人上網(wǎng)時間少于60分鐘的概率;
          (2)完成下面的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時間與性別有關(guān)”?
           
          上網(wǎng)時間少于60分鐘
          上網(wǎng)時間不少于60分鐘
          合計
          男生
           
           
           
          女生
           
           
           
          合計
           
           
           
          附:K2
          P(K2≥k0)
          0.100
          0.050
          0.025
          0.010
          0.005
          k0
          2.706
          3.841
          5.024
          6.635
          7.879

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某工廠有25周歲以上(含2S周歲)工人300名,25周歲以下工人200名為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100),分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

          (1)求樣本中“25周歲以上(含25周歲)組”抽取的人數(shù)、日生產(chǎn)量平均數(shù);
          (2)若“25周歲以上組”中日平均生產(chǎn)90件及90件以上的稱為“生產(chǎn)能手”;“25周歲以下組”中日平均生產(chǎn)不足60件的稱為“菜鳥”。從樣本中的“生產(chǎn)能手”和”菜鳥”中任意抽取2人,求這2人日平均生產(chǎn)件數(shù)之和X的分布列及期望。(“生產(chǎn)能手”日平均生產(chǎn)件數(shù)視為95件,“菜鳥”日平均生產(chǎn)件數(shù)視為55件)。

          查看答案和解析>>

          同步練習(xí)冊答案