日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在正方形中,點(diǎn)分別是的中點(diǎn),交于點(diǎn),點(diǎn)分別在線段上,且.將分別沿折起,使點(diǎn)重合于點(diǎn),如圖2所示.

          (1)求證:平面

          (2)若正方形的邊長為4,求三棱錐的內(nèi)切球的半徑.

          【答案】(1)詳見解析;(2).

          【解析】

          試題分析:(1)因?yàn)辄c(diǎn)重合于點(diǎn)(該點(diǎn)記為),由原圖可知,三條直線兩兩垂直,那么平面,又根據(jù)圖中給的比例關(guān)系,可知,根據(jù)平行關(guān)系可知,平行線與同一平面垂直,即證明;(2)因?yàn)閮?nèi)切球的球心到三棱錐的四個(gè)面的距離相等,所以可將三棱錐的體積分為四個(gè)小三棱錐的體積和,而每一個(gè)小三棱錐的高就是內(nèi)切球的半徑,這樣根據(jù)體積和可求得內(nèi)切球的半徑.

          試題解析:(1)在正方形中,為直角,

          在三棱錐中,三條線段兩兩垂直...................2分

          平面...........................3分

          ,即中,...............4分

          平面....................6分

          (2)正方形邊長為4.

          由題意,...................7分

          ..................10分

          設(shè)三棱錐內(nèi)切球半徑為

          則三棱錐的體積

          三棱錐的內(nèi)切球的半徑為.....................12分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

          (2)設(shè),若對任意的,存在使得成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知x1是函數(shù)f(x)ax3x2(a1)x5的一個(gè)極值點(diǎn).

          (1)求函數(shù)f(x)的解析式;

          (2)若曲線yf(x)與直線y2xm有三個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且 , , 中點(diǎn).

          (Ⅰ)求證: ∥平面;

          (Ⅱ)求直線與平面所成角的正弦值;

          (Ⅲ)在棱上是否存在點(diǎn),使 ? 若存在,求的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱中, ,點(diǎn)的中點(diǎn).

          ①求證:

          ②求點(diǎn)到平面的距離.

          ③求二面角的余弦值的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù), = .

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若函數(shù)有兩個(gè)零點(diǎn).

          (1)求滿足條件的最小正整數(shù)的值;

          (2)求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知過原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.

          (1)求線段AB的中點(diǎn)M的軌跡C的方程;

          (2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為等差數(shù)列,前n項(xiàng)和為,是首項(xiàng)為2的等比數(shù)列,且公比大于0,,,

          1的通項(xiàng)公式;

          2求數(shù)列的前n項(xiàng)和

          查看答案和解析>>

          同步練習(xí)冊答案