日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),在點處的切線方程是(e為自然對數(shù)的底)。
          (1)求實數(shù)的值及的解析式;
          (2)若是正數(shù),設,求的最小值;
          (3)若關于x的不等式對一切恒成立,求實數(shù)的取值范圍。

          (1)a=1,b=0,f(x)=xlnx;(2)tln(3)

          解析試題分析:(1)根據(jù)函數(shù)在點(e,f(e))處的切線方程是2x﹣y﹣e=0,可得f(e)=e,f′(e)=2,利用點(e,f(e))在函數(shù)f(x)=ax•lnx+b上,即可求實數(shù)a,b的值及f(x)的解析式;
          (2)h(x)=f(x)+f(t﹣x)=xlnx+(t﹣x)ln(t﹣x),h(x)的定義域為(0,t),確定函數(shù)的單調(diào)性,從而可求h(x)的最小值;
          (3)xlnx+(6﹣x)ln(6﹣x)=f(x)+f(6﹣x)=h(x),t=6時h(x)min=h(3)=6ln3=ln729,從而關于x的不等式xlnx+(6﹣x)ln(6﹣x)≥ln(k2﹣72k)對一切x∈(0,6)恒成立,轉(zhuǎn)化為ln(k2﹣72k)≤ln729,解不等式,即可求得實數(shù)k的取值范圍.
          試題解析:(1)依題意有2e﹣f(e)﹣e=0,∴f(e)=e
          ∵f(x)=ax•lnx+b,∴f′(x)=alnx+a+b∴f′(e)=alne+a+b=2,∴2a+b=2,∴b=2﹣2a
          ∵點(e,f(e))在函數(shù)f(x)=ax•lnx+b上∴f(e)=aelne+b=ae+b=e
          ∴ae+2﹣2a=e,∴a=1∴b=0,∴f(x)=xlnx;
          故實數(shù)a=1,b=0,f(x)=xlnx                          …(4分)
          (2)h(x)=f(x)+f(t﹣x)=xlnx+(t﹣x)ln(t﹣x),
          的定義域為;              
          增函數(shù)減函數(shù)
           (8分)
          (3)
          由(2)知

          對一切恒成立


          故實數(shù)的取值范圍.(12分)
          考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值;利用導數(shù)研究曲線上某點切線方程.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)的導函數(shù)為,.求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)。
          (1)當時,求的單調(diào)區(qū)間、最大值;
          (2)設函數(shù),若存在實數(shù)使得,求m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)= -ax(a∈R,e為自然對數(shù)的底數(shù)).
          (1)討論函數(shù)f(x)的單調(diào)性;
          (2)若a=1,函數(shù)g(x)=(x-m)f(x)-+x2+x在區(qū)間(0,+)上為增函數(shù),求整數(shù)m 的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)若,求函數(shù)的單調(diào)區(qū)間;
          (2)設函數(shù)在區(qū)間上是增函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),其中a,b∈R
          (1)當a=3,b=-1時,求函數(shù)f(x)的最小值;
          (2)若曲線y=f(x)在點(e,f(e))處的切線方程為2x-3y-e=0(e=2.71828 為自然對數(shù)的底數(shù)),求a,b的值;
          (3)當a>0,且a為常數(shù)時,若函數(shù)h(x)=x[f(x)+lnx]對任意的x1>x2≥4,總有成立,試用a表示出b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù):f(x)=x3+ax2+bx+c,過曲線y=f(x)上的點P(1,f(1))的切線方程為y=3x+1
          (1)y=f(x)在x=-2時有極值,求f(x)的表達式;
          (2)函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:填空題

          函數(shù) 的最大值記為g(t),當t在實數(shù)范圍內(nèi)變化時g(t)最小值為        

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:填空題

          若函數(shù)在點處存在極值,則
          a=              ,b=              。

          查看答案和解析>>

          同步練習冊答案