已知數(shù)列為公差不為
的等差數(shù)列,
為前
項(xiàng)和,
和
的等差中項(xiàng)為
,且
.令
數(shù)列
的前
項(xiàng)和為
.
(1)求及
;
(2)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的
的值;若不存在,請說明理由.
(1),
;(2)存在,
.
解析試題分析:(1)由條件設(shè)公差為,從而得到
,即得到
.再代入
中,通過裂項(xiàng)相消法即可得
;(2)先假設(shè)存在,分別寫出
表達(dá)式,再由等比中項(xiàng)的性質(zhì)得到
,再通過分析得
,而
,且
都是正整數(shù),則可得
只能為2,代入得
符合題意.所以存在
可以使
成等比數(shù)列.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/91/f/fdnip4.png" style="vertical-align:middle;" />為等差數(shù)列,設(shè)公差為,則由題意得
整理得
所以 3分
由
所以 5分
(Ⅱ)假設(shè)存在
由(Ⅰ)知,,所以
若成等比,則有
8分
(1)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/04/9/1ksgl2.png" style="vertical-align:middle;" />,所以, 10分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c1/7/okvzl.png" style="vertical-align:middle;" />,當(dāng)時(shí),帶入(1)式,得
;
綜上,當(dāng)可以使
成等比數(shù)列. 12分
考點(diǎn):1.等差中項(xiàng)的性質(zhì);2.等比中項(xiàng)的性質(zhì);3.裂項(xiàng)相消法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
.
(1)求證:是等比數(shù)列,并求
的通項(xiàng)公式
;
(2)數(shù)列滿足
,數(shù)列
的前n項(xiàng)和為
,若不等式
對一切
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前
項(xiàng)和為
,若
,點(diǎn)
在直線
上.
⑴求證:數(shù)列是等差數(shù)列;
⑵若數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和
;
⑶設(shè),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列的前
項(xiàng)和
,且
成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足
,求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為數(shù)列
的前
項(xiàng)和,對任意的
,都有
(
為正常數(shù)).
(1)求證:數(shù)列是等比數(shù)列;
(2)數(shù)列滿足
,
,求數(shù)列
的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三個(gè)不同的數(shù)成等差數(shù)列,其和為6,如果將此三個(gè)數(shù)重新排列,他們又可以成等比數(shù)列,求這個(gè)等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足
,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
,前
和
(Ⅰ)求證:數(shù)列是等差數(shù)列; (Ⅱ)求數(shù)列
的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列的前
項(xiàng)和為
,是否存在實(shí)數(shù)
,使得
對一切正整數(shù)
都成立?若存在,求
的最小值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知首項(xiàng)為的等比數(shù)列
的前n項(xiàng)和為
, 且
成等差數(shù)列.
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ) 證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com