【題目】已知無窮數(shù)列的前
項中的最大項為
,最小項為
,設(shè)
(1)若,求數(shù)列
的通項公式;
(2)若,求數(shù)列
的前
項和
;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列
是等差數(shù)列.
【答案】(1)(2)
,當(dāng)
時,
(3)證明見解析
【解析】
(1)根據(jù)數(shù)列為遞增數(shù)列得到答案.
(2)計算,
時,數(shù)列單調(diào)遞減,故
時,
,利用分組求和與錯位相減法計算得到答案.
(3)設(shè)數(shù)列的公差為
,則
,討論
,
,
三種情況,分別證明等差數(shù)列得到答案.
(1)是遞增數(shù)列,所以
,所以
.
(2)由得
,
當(dāng),即
;當(dāng)
,即
又,所以
,
當(dāng)時,
,
所以,
令,對應(yīng)的前
項和為
,
則,
,
兩式相減化簡整理得到:,
當(dāng)時,
.
綜上所述,,當(dāng)
時,
.
(3)設(shè)數(shù)列的公差為
,則
,
由題意,
①,對任意
都成立,即
,
是遞增數(shù)列.
所以,所以
,
所以是公差為
的等差數(shù)列;
②當(dāng)時,
對任意
都成立,進(jìn)而
,
所以是遞減數(shù)列.
,所以
所以是公差為
的等差數(shù)列;
③當(dāng)時,
,
因為與
中至少有一個為0,所以二者都為0,進(jìn)而
為常數(shù)列,
綜上所述,數(shù)列等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從五所高校中任選2所.
(1)求甲、乙、丙三名同學(xué)都選高校的概率;
(2)若已知甲同學(xué)特別喜歡高校,他必選
校,另在
四校中再隨機(jī)選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.
(i)求甲同學(xué)選高校且乙、丙都未選
高校的概率;
(ii)記為甲、乙、丙三名同學(xué)中選
高校的人數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足
.
(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;
(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(Ⅰ)求直線的直角坐標(biāo)方程與曲線
的普通方程;
(Ⅱ)已知點設(shè)直線
與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、點
及拋物線
.
(1)若直線過點
及拋物線
上一點
,當(dāng)
最大時求直線
的方程;
(2)軸上是否存在點
,使得過點
的任一條直線與拋物線
交于點
,且點
到直線
的距離相等?若存在,求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),將曲線
上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線
,以坐標(biāo)原點
為極點,
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)寫出的極坐標(biāo)方程與直線
的直角坐標(biāo)方程;
(2)曲線上是否存在不同的兩點
,
(以上兩點坐標(biāo)均為極坐標(biāo),
,
),使點
、
到
的距離都為3?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點
為極點,
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)設(shè)是曲線
上的一個動瞇,當(dāng)
時,求點
到直線
的距離的最小值;
(2)若曲線上所有的點都在直線
的右下方,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com