【題目】如圖,是平行四邊形,
,
為
的中點,且有
,現(xiàn)以
為折痕,將
折起,使得點
到達(dá)點
的位置,且
(1)證明:平面
;
(2)若四棱錐的體積為
,求四棱錐
的側(cè)面積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
【答案】(1),
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知,
,
由,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以
,
又,所以
,
若,則
,與
矛盾,故
,
.
(2)由(1)可知,
,
由,可得
,
令,
,
令
當(dāng)時,
,
單調(diào)遞減,且
;
當(dāng)時,
,
單調(diào)遞增;且
,
所以在
上當(dāng)單調(diào)遞減,在
上單調(diào)遞增,且
,
故,
故.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(1)求未來4年中,至多有1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關(guān)系:
年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
發(fā)電機最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式組 的解集記為D,有下列四個命題:
p1:(x,y)∈D,x+2y≥﹣2 p2:(x,y)∈D,x+2y≥2
p3:(x,y)∈D,x+2y≤3 p4:(x,y)∈D,x+2y≤﹣1
其中真命題是( )
A.p2 , p3
B.p1 , p4
C.p1 , p2
D.p1 , p3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點p(1,m)在拋物線上,F為焦點,且
.
(1)求拋物線C的方程;
(2)過點T(4,0)的直線交拋物線C于A,B兩點,O為坐標(biāo)原點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,
都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率;
(2)若,
都是從區(qū)間
上任取的一個數(shù),求
成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 滿足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】7個人排成一排,按下列要求各有多少種排法?
其中甲不站排頭,乙不站排尾;
其中甲、乙、丙3人兩兩不相鄰;
其中甲、乙中間有且只有1人;
其中甲、乙、丙按從左到右的順序排列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com