日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. x2
          m
          -
          y2
          n
          =1
          (其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個,則此方程是焦點在x軸上的雙曲線方程的概率為( 。
          分析:m和n的所有可能取值共有3×3=9個,其中有兩種不符合題意,故共有7種,可一一列舉,從中數(shù)出能使方程是焦點在x軸上的雙曲線的選法,即m和n都為正的選法數(shù),最后由古典概型的概率計算公式即可得其概率
          解答:解:設(shè)(m,n)表示m,n的取值組合,則取值的所有情況有(-1,-1),(2,-1),(2,2),(2,3),(3,-1),(3,2),(3,3)共7個,(注意(-1,2),(-1,3)不合題意)
          其中能使方程是焦點在x軸上的雙曲線的有:(2,2),(2,3),(3,2),(3,3)共4個
          ∴此方程是焦點在x軸上的雙曲線方程的概率為
          4
          7

          故選B
          點評:本題考查了古典概型概率的求法,橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程,列舉法計數(shù)的技巧,準(zhǔn)確計數(shù)是解決本題的關(guān)鍵
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          從集合{-1,1,2,3}中任意取出兩個不同的數(shù)記作m,n,則方程
          x2
          m
          +
          y2
          n
          =1
          表示焦點在x軸上的雙曲線的概率是
          1
          4
          1
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•普陀區(qū)二模)從集合A={-2,-1,1,2,3}中任取兩個元素m、n(m≠n),則方程
          x2
          m
          +
          y2
          n
          =1
          所對應(yīng)的曲線表示焦點在y軸上的雙曲線的概率是
          3
          10
          3
          10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          從集合A={-1,1,2,3}中任取兩個元素m、n(m≠n),則方程
          x2
          m
          +
          y2
          n
          =1
          所對應(yīng)的曲線表示焦點在y軸上的雙曲線的概率是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          x2
          m
          -
          y2
          n
          =1
          (其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個,則此方程是焦點在x軸上的雙曲線方程的概率為(  )
          A.
          1
          2
          B.
          4
          7
          C.
          2
          3
          D.
          3
          4

          查看答案和解析>>

          同步練習(xí)冊答案