日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線 的焦點為,點為其上一點,且

          (1)求的值;

          (2)如圖,過點作直線交拋物線于、兩點,求直線的斜率之積.

          【答案】(1)p=4, ;(2)直線、的斜率之積為.

          【解析】試題分析:(1)利用和點在拋物線上即可求解;

          (2)討論斜率不存在和斜率存在時兩種情況,斜率不存在直接檢驗即可;當直線的斜率存在,設為,則其方程可表示為: ,與拋物線聯(lián)立, , ,利用韋達定理求解即可.

          試題解析:

          (1)拋物線 的焦點為,準線為。

          由拋物線定義知:點的距離等于到準線的距離,故

          , ,拋物線的方程為

          在拋物線上,

          ,

          (2)由(1)知:拋物線的方程為,焦點為

          若直線的斜率不存在,則其方程為: ,代入,易得:

          , ,從而;

          若直線的斜率存在,設為,則其方程可表示為:

          ,消去,得:

          ,

          , ,則

          從而

          綜上所述:直線、的斜率之積為。

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)定義在上的奇函數(shù), 的最大值為.

          1)求函數(shù)的解析式;

          2)關于的方程上有解,求實數(shù)的取值范圍;

          3)若存在,不等式成立,請同學們探究實數(shù)的所有可能取值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)是定義在R上的偶函數(shù),且x0時,f(x)log (x1)

          (1)f(0),f(1);

          (2)求函數(shù)f(x)的解析式;

          (3)f(a1)<1,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某車間20名工人年齡數(shù)據(jù)如下表:

          年齡(歲)

          19

          24

          26

          30

          34

          35

          40

          合計

          工人數(shù)(人)

          1

          3

          3

          5

          4

          3

          1

          20

          (1)求這20名工人年齡的眾數(shù)與平均數(shù);

          (2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

          (3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】A是同時符合以下性質(zhì)的函數(shù)f(x)組成的集合:

          x[0,+),都有f(x)∈(1,4];f(x)[0,+)上是減函數(shù).

          (1)判斷函數(shù)f1(x)2f2(x)1 (x0)是否屬于集合A,并簡要說明理由;

          (2)(1)中你認為是集合A中的一個函數(shù)記為g(x),若不等式g(x)g(x2)k對任意的x0總成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若軸垂直,是橢圓上位于直線兩側的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)有兩個不同的零點.

          (Ⅰ)求的取值范圍;

          (Ⅱ)記兩個零點分別為,且,已知,若不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】電視連續(xù)劇《人民的名義》自2017年3月28日在湖南衛(wèi)視開播以來,引發(fā)各方關注,收視率、點擊率均占據(jù)各大排行榜首位.我們用簡單隨機抽樣的方法對這部電視劇的觀看情況進行抽樣調(diào)查,共調(diào)查了600人,得到結果如下:其中圖1是非常喜歡《人民的名義》這部電視劇的觀眾年齡的頻率分布直方圖;表1是不同年齡段的觀眾選擇不同觀看方式的人數(shù).

          觀看方式

          年齡(歲)

          電視

          網(wǎng)絡

          150

          250

          120

          80

          求:(I)假設同一組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,求非常喜歡《人民的名義》這部電視劇的觀眾的平均年齡;

          (II)根據(jù)表1,通過計算說明我們是否有99%的把握認為觀看該劇的方式與年齡有關?

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          附:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

          (Ⅰ)當0≤x≤200時,求函數(shù)v(x)的表達式;

          (Ⅱ)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).

          查看答案和解析>>

          同步練習冊答案