【題目】已知拋物線上一點(diǎn)
到其焦點(diǎn)
的距離為4,橢圓
的離心率
,且過(guò)拋物線的焦點(diǎn)
.
(1)求拋物線和橢圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線
交拋物線
于
兩不同點(diǎn),交
軸于點(diǎn)
,已知
,
,求證:
為定值.
【答案】(1)拋物線的方程為,橢圓的標(biāo)準(zhǔn)方程為
;(2)見(jiàn)解析.
【解析】試題分析:(1)利用拋物線C1:y2=2px上一點(diǎn)M(3,y0)到其焦點(diǎn)F的距離為4;求出p,即可得到拋物線方程,通過(guò)橢圓的離心率e=,,且過(guò)拋物線的焦點(diǎn)F(1,0)求出a,b,即可得到橢圓的方程;
(2)直線l1的斜率必存在,設(shè)為k,設(shè)直線l與橢圓C2交于A(x1,y1),B(x2,y2),求出直線l的方程為y=k(x-1),N(0,-k),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理以及判別式,通過(guò)向量關(guān)系式即可求出λ+μ為定值.
試題解析:
(Ⅰ)拋物線的準(zhǔn)線為, 所以
,所以
拋物線的方程為
所以,
,解得
所以橢圓的標(biāo)準(zhǔn)方程為
(Ⅱ)直線的斜率必存在,設(shè)為
,設(shè)直線
與拋物線
交于
則直線的方程為
,
聯(lián)立方程組:
所以
,
(*)
由得:
得:
所以
將(*)代入上式,得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意的,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
()求
的單調(diào)區(qū)間.
()證明:當(dāng)
時(shí),方程
在區(qū)間
上只有一個(gè)零點(diǎn).
()設(shè)
,其中
若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,E為AD的中點(diǎn),F為B1C1的中點(diǎn).
(1)求證:A1F∥平面ECC1;
(2)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)時(shí),求函數(shù)
在區(qū)間
上的最大值與最小值;
(Ⅱ)當(dāng)的圖像經(jīng)過(guò)點(diǎn)
時(shí),求
的值及函數(shù)
的最小正周期.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“中華好詩(shī)詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩(shī)詞經(jīng)典的熱潮.某大學(xué)社團(tuán)為調(diào)查大學(xué)生對(duì)于“中華詩(shī)詞”的喜好,在該校隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間,并整理得到如下頻率分布直方圖:
根據(jù)學(xué)生每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間,可以將學(xué)生對(duì)于“中華詩(shī)詞”的喜好程度分為三個(gè)等級(jí) :
學(xué)習(xí)時(shí)間 (分鐘/天) | |||
等級(jí) | 一般 | 愛(ài)好 | 癡迷 |
(Ⅰ) 求的值;
(Ⅱ) 從該大學(xué)的學(xué)生中隨機(jī)選出一人,試估計(jì)其“愛(ài)好”中華詩(shī)詞的概率;
(Ⅲ) 假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試估計(jì)樣本中40名學(xué)生每人每天學(xué)習(xí)“中華詩(shī)詞”的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市高中全體學(xué)生參加某項(xiàng)測(cè)評(píng),按得分評(píng)為兩類(評(píng)定標(biāo)準(zhǔn)見(jiàn)表1).根據(jù)男女學(xué)生比例,使用分層抽樣的方法隨機(jī)抽取了10000名學(xué)生的得分?jǐn)?shù)據(jù),其中等級(jí)為
的學(xué)生中有40%是男生,等級(jí)為
的學(xué)生中有一半是女生.等級(jí)為
和
的學(xué)生統(tǒng)稱為
類學(xué)生,等級(jí)為
和
的學(xué)生統(tǒng)稱為
類學(xué)生.整理這10000名學(xué)生的得分?jǐn)?shù)據(jù),得到如圖2所示的頻率分布直方圖,
類別 | 得分( | |
表1
(I)已知該市高中學(xué)生共20萬(wàn)人,試估計(jì)在該項(xiàng)測(cè)評(píng)中被評(píng)為類學(xué)生的人數(shù);
(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機(jī)選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學(xué)生”的概率;
(Ⅲ)在這10000名學(xué)生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為
,
類男生占男生總數(shù)的比例為
,判斷
與
的大。ㄖ恍鑼(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
,以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線
.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的
倍、2倍后得到曲線
.試寫(xiě)出直線
的直角坐標(biāo)方程和曲線
的參數(shù)方程;
(2)在曲線上求一點(diǎn)
,使點(diǎn)
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)
的極坐標(biāo)為
,直線
的極坐標(biāo)方程為
,且
過(guò)點(diǎn)
,曲線
的參考方程為
(
為參數(shù)).
(1)求曲線上的點(diǎn)到直線
的距離的最大值與最小值;
(2)過(guò)點(diǎn)與直線
平行的直線
與曲
線交于
兩點(diǎn),求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com