【題目】在平面直角坐標(biāo)系中,已知曲線
,以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線
.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的
倍、2倍后得到曲線
.試寫出直線
的直角坐標(biāo)方程和曲線
的參數(shù)方程;
(2)在曲線上求一點(diǎn)
,使點(diǎn)
到直線
的距離最大,并求出此最大值.
【答案】(1)直線的直角坐標(biāo)方程為:
.曲線
的參數(shù)方程為
(
為參數(shù)).(2)點(diǎn)
,此時(shí)
.
【解析】試題分析:(1)利用,可得直線
的直角坐標(biāo)方程為:
,利用
,可得曲線
的直角坐標(biāo)方程為:
,進(jìn)而可得曲線
的參數(shù)方程;(2)根據(jù)曲線
的直角坐標(biāo)方程,設(shè)點(diǎn)
的坐標(biāo)
,則點(diǎn)
到直線
的距離為
,利用輔助角公式及三角函數(shù)的有界性可得結(jié)果.
試題解析:(1)由題意知,直線的直角坐標(biāo)方程為:
.
曲線的直角坐標(biāo)方程為:
,
∴曲線的參數(shù)方程為
(
為參數(shù)).
(2)設(shè)點(diǎn)的坐標(biāo)
,則點(diǎn)
到直線
的距離為:
,
∴當(dāng),
時(shí),點(diǎn)
,
此時(shí).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80 m.經(jīng)測量,點(diǎn)A位于點(diǎn)O正北方向60 m處,點(diǎn)C位于點(diǎn)O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點(diǎn)
到其焦點(diǎn)
的距離為4,橢圓
的離心率
,且過拋物線的焦點(diǎn)
.
(1)求拋物線和橢圓
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線
交拋物線
于
兩不同點(diǎn),交
軸于點(diǎn)
,已知
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,
平面
,
.過
的平面交
于點(diǎn)
,交
于點(diǎn)
.
(l)求證: 平面
;
(Ⅱ)求證: ;
(Ⅲ)記四棱錐的體積為
,三棱柱
的體積為
.若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,函數(shù)
的極大值為
,求實(shí)數(shù)
的值;
(2)若對任意的,
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知,
,函數(shù)
.
(Ⅰ)當(dāng),
時(shí),解關(guān)于
的不等式
;
(Ⅱ)若函數(shù)的最大值為2,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列各項(xiàng)均為正數(shù),
,
,且
對任意
恒成立,記
的前
項(xiàng)和為
.
(1)若,求
的值;
(2)證明:對任意正實(shí)數(shù),
成等比數(shù)列;
(3)是否存在正實(shí)數(shù),使得數(shù)列
為等比數(shù)列.若存在,求出此時(shí)
和
的表達(dá)式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有極值,且在
處的切線與直線
垂直.
(1)求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),使得函數(shù)
的極小值為
.若存在,求出實(shí)數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),
、
是雙曲線
上的兩個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)
滿足
,直線
與直線
斜率之積為2,已知平面內(nèi)存在兩定點(diǎn)
、
,使得
為定值,則該定值為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com