日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的函數(shù),給出下列結(jié)論:
          ①若存在常數(shù)x,使f′(x)=0,則函數(shù)f(x)必在x處取得極值;
          ②若函數(shù)f(x)在x處取得極值,則函數(shù)f(x)在x處必可導(dǎo);
          ③若函數(shù)f(x)在R上處處可導(dǎo),則它有極小值就是它在R上的最小值;
          ④若對(duì)于任意x≠x都有f(x)>f(x),則f(x)是函數(shù)f(x)的最小值;
          ⑤若對(duì)于任意x<x有f′(x)>0,對(duì)于任意x>x有f′(x)<0,則f(x)是函數(shù)f(x)的一個(gè)最大值;
          其中正確結(jié)論的序號(hào)是    
          【答案】分析:根據(jù)導(dǎo)數(shù)等于0的值不一定是極值,要注意驗(yàn)證導(dǎo)數(shù)為0處左右的函數(shù)的單調(diào)性確定是否極值,極值只是相對(duì)于一點(diǎn)附近的局部性質(zhì),最值是相對(duì)整個(gè)定義域內(nèi)或所研究問(wèn)題的整體的性質(zhì),連續(xù)函數(shù)在R內(nèi)只有一個(gè)極值,那么極大值就是最大值,進(jìn)行逐一判定即可.
          解答:解:導(dǎo)數(shù)等于0的值不一定是極值,要注意驗(yàn)證導(dǎo)數(shù)為0處左右的函數(shù)的單調(diào)性確定是否極值,故①不正確
          極值點(diǎn)只能在函數(shù)不可導(dǎo)的點(diǎn)或?qū)?shù)為零的點(diǎn)中取,故②不正確
          根據(jù)極小值不止一個(gè),極值只是相對(duì)于一點(diǎn)附近的局部性質(zhì),故極小值就是它在R上的最小值是錯(cuò)的,故③不正確
          最值是相對(duì)整個(gè)定義域內(nèi)或所研究問(wèn)題的整體的性質(zhì),根據(jù)函數(shù)最小值的定義可知④正確
          連續(xù)函數(shù)在R內(nèi)只有一個(gè)極值,那么極大值就是最大值,故⑤正確
          故答案為:④⑤
          點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及函數(shù)最值等有關(guān)基礎(chǔ)知識(shí),考查推理論證能力,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          2x+2-x
          2
          ,g(x)=
          2x-2-x
          2

          (1)計(jì)算:[f(1)]2-[g(1)]2;
          (2)證明:[f(x)]2-[g(x)]2是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=x+
          a
          x
          的定義域?yàn)椋?,+∞),且f(2)=2+
          2
          2
          .設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線(xiàn)y=x和y軸的垂線(xiàn),垂足分別為M、N.
          (1)求a的值.
          (2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
          (3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
          1
          2
          的點(diǎn)P滿(mǎn)足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點(diǎn)).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )(n∈N*,N≥2),求Sn;
          (3)在(2)的條件下,若an=
          1
          6
           ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線(xiàn)y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案