【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結(jié)論:
①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);
②曲線C上任意一點到原點的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號是
A. ①B. ②C. ①②D. ①②③
【答案】C
【解析】
將所給方程進行等價變形確定x的范圍可得整點坐標和個數(shù),結(jié)合均值不等式可得曲線上的點到坐標原點距離的最值和范圍,利用圖形的對稱性和整點的坐標可確定圖形面積的范圍.
由得,
,
,
所以可為的整數(shù)有0,-1,1,從而曲線
恰好經(jīng)過(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六個整點,結(jié)論①正確.
由得,
,解得
,所以曲線
上任意一點到原點的距離都不超過
. 結(jié)論②正確.
如圖所示,易知,
四邊形的面積
,很明顯“心形”區(qū)域的面積大于
,即“心形”區(qū)域的面積大于3,說法③錯誤.
故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
①函數(shù)的值域是
,則函數(shù)
的值域為
;
②把函數(shù)圖像上的每一個點的橫坐標伸長到原來的4倍,然后再向右平移
個單位得到的函數(shù)解析式為
;
③已知,則與
共線的單位向量為
;
④一條曲線和直線
的公共點個數(shù)是m,則m的值不可能是1.
其中正確的有___________(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果直線a平行于平面,則( )
A.平面內(nèi)有且只有一直線與a平行
B.平面內(nèi)有無數(shù)條直線與a平行
C.平面內(nèi)不存在與a平行的直線
D.平面內(nèi)的任意直線與直線a都平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題
①若三個平面兩兩相交,則它們的交線只能平行或重合;
②若a、b是異面直線,則過不在a、b上的任一點一定可以作一條直線和a、b都相交;
③正三棱錐的底面邊長為a,側(cè)棱長為b,若過SA、SB的中點作平行于側(cè)棱SC的截面,則截面面積為
;
④過球面上任意給定兩點的平面與球面相截時其截面面積最大,則這樣的平面只有一個.
其中( ).
A. 只有①,②成立.
B. 只有③成立.
C. 只有④ 成立.
D. ①、②、③、④都不成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,
是矩形,
平面
,
,
,四棱錐外接球的球心為
,點
是棱
上的一個動點.給出如下命題:①直線
與直線
所成的角中最小的角為
;②
與
一定不垂直;③三棱錐
的體積為定值;④
的最小值為
.其中正確命題的序號是__________.(將你認為正確的命題序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知曲線上的點到點
的距離比它到直線
的距離小2.
(1)求曲線的方程;
(2)曲線在點
處的切線
與
軸交于點
.直線
分別與直線
及
軸交于點
,以
為直徑作圓
,過點
作圓
的切線,切點為
,試探究:當點
在曲線
上運動(點
與原點不重合)時,線段
的長度是否發(fā)生變化?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為:
(
為參數(shù)),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為:
.
(Ⅰ)求直線與曲線
公共點的極坐標;
(Ⅱ)設(shè)過點的直線
交曲線
于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是直角梯形,側(cè)棱
底面
,
垂直于
和
,
為棱
上的點,
,
.
(1)若為棱
的中點,求證:
平面
;
(2)當時,求平面
與平面
所成的銳二面角的余弦值;
(3)在第(2)問條件下,設(shè)點是線段
上的動點,
與平面
所成的角為
,求當
取最大值時點
的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有10個粽子,其中豆沙粽子3個,肉粽子2個,白粽子5個,這三種粽子的外觀完全相同,從中任意選取3個.
(1)求三種粽子各取到1個的概率;
(2)設(shè)ξ表示取到的豆沙粽子個數(shù),求ξ的分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com