日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:

          時間

          星期一

          星期二

          星期三

          星期四

          星期五

          星期六

          星期日

          車流量(萬輛)

          1

          2

          3

          4

          5

          6

          7

          的濃度(微克/立方米)

          28

          30

          35

          41

          49

          56

          62

          (1)求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

          (2)(I)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度;(II)規(guī)定:當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .

          【答案】(1) ;(2)() 91微克/立方米;() 13萬輛.

          【解析】

          (1)由數(shù)據(jù)可得: , 結(jié)合回歸方程計算系數(shù)可得關(guān)于的線性回歸方程為.

          (2)(I)結(jié)合(1)中的回歸方程可預測車流量為12萬輛時, 的濃度為91微克/立方米. (II)由題意得到關(guān)于x的不等式,求解不等式可得要使該市某日空氣質(zhì)量為優(yōu)或為良,則應(yīng)控制當天車流量在13萬輛以內(nèi).

          (1)由數(shù)據(jù)可得: ,

          , ,

          ,故關(guān)于的線性回歸方程為.

          (2)(I)當車流量為12萬輛時,即時, .故車流量為12萬輛時, 的濃度為91微克/立方米.

          (II)根據(jù)題意信息得: ,即故要使該市某日空氣質(zhì)量為優(yōu)或為良,則應(yīng)控制當天車流量在13萬輛以內(nèi).

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】甲、乙兩運動員進行射擊訓練,已知他們擊中的環(huán)數(shù)都穩(wěn)定在7,8,9,10環(huán),且每次射擊成績互不影響.射擊環(huán)數(shù)的頻率分布條形圖如下:

          若將頻率視為概率,回答下列問題:

          (1)求甲運動員在3次射擊中至少有1次擊中9環(huán)以上(含9環(huán))的概率;

          (2)若甲、乙兩運動員各自射擊1次,表示這2次射擊中擊中9環(huán)以上(含9環(huán))的次數(shù),求的分布列及期望

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】要得到函數(shù)f(x)=2sinxcosx,x∈R的圖象,只需將函數(shù)g(x)=2cos2x﹣1,x∈R的圖象(
          A.向左平移 個單位
          B.向右平移 個單位
          C.向左平移 個單位
          D.向右平移 個單位

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.

          (Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;

          (Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在(,]n=1,2,3,4,5)時,日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:

          ①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學期望及方差;

          ②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。

          (參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

          【答案】甲方案的函數(shù)關(guān)系式為: ,乙方案的函數(shù)關(guān)系式為:;(Ⅱ)①見解析,②見解析.

          【解析】

          由題意可得甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為: , 乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:.

          ①由題意求得X的分布列,據(jù)此計算可得,,.

          ②答案一:由以上的計算可知,遠小于,即甲方案日工資收入波動相對較小,所以小明應(yīng)選擇甲方案.

          答案二:由以上的計算結(jié)果可以看出,,所以小明應(yīng)選擇乙方案.

          Ⅰ)甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為: ,

          乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:

          ①由已知,在這100天中,該公司派送員日平均派送單數(shù)滿足如下表格:

          單數(shù)

          52

          54

          56

          58

          60

          頻率

          0.2

          0.3

          0.2

          0.2

          0.1

          所以的分布列為:

          152

          154

          156

          158

          160

          0.2

          0.3

          0.2

          0.2

          0.1

          所以

          所以的分布列為:

          140

          152

          176

          200

          0.5

          0.2

          0.2

          0.1

          所以

          ②答案一:由以上的計算可知,雖然,但兩者相差不大,且遠小于,即甲方案日工資收入波動相對較小,所以小明應(yīng)選擇甲方案.

          答案二:由以上的計算結(jié)果可以看出,,即甲方案日工資期望小于乙方案日工資期望,所以小明應(yīng)選擇乙方案.

          【點睛】

          本題主要考查頻率分布直方圖,數(shù)學期望與方差的含義與實際應(yīng)用等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.

          型】解答
          結(jié)束】
          20

          【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設(shè)直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PC= AC,平面PAC⊥平面ABCD.

          (1)點E在棱PC上,試確定點E的位置,使得PD⊥平面ABE;
          (2)求二面角A﹣PD﹣C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知x,y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為(
          A. 或﹣1
          B.2或
          C.2或﹣1
          D.2或1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在40分以下的學生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數(shù)分布表.

          (1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,數(shù)學成績與性別是否有關(guān);

          (2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表并判斷是否有90%以上的把握認為“數(shù)學成績與性別有關(guān)”.

          附表及公式:

          P(K2k)

          0.100

          0.050

          0.010

          0.001

          k

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程是ρ=asinθ,直線l的參數(shù)方程是 (t為參數(shù))
          (1)若a=2,直線l與x軸的交點是M,N是圓C上一動點,求|MN|的最大值;
          (2)直線l被圓C截得的弦長等于圓C的半徑的 倍,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是

          查看答案和解析>>

          同步練習冊答案