日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù))
          (1)以原點O為極點,以x軸正半軸為極軸(與直角坐標系xOy取相同的長度單位)建立極坐標系,若點P的極坐標為(4, ),判斷點P與直線l的位置關系;
          (2)設點Q是曲線C上的一個動點,利用曲線C的參數(shù)方程求Q到直線l的距離的最大值與最小值的差.

          【答案】
          (1)解:把點P的極坐標(4, ),轉化成直角坐標P(2,2 ),

          把直線l的參數(shù)方程: ,化為直角坐標方程為y= x+1,

          由于點P的坐標不滿足直線l的方程,故P不在直線l上


          (2)解:點Q是曲線C上的一個動點,曲線C的參數(shù)方程為 (θ為參數(shù)),

          曲線C的直角坐標方程為:(x﹣2)2+y2=1,

          ∴曲線C表示已(2,0)為圓心,1為半徑的圓,

          圓心到直線的距離為d= = + ,

          故點Q到直線l的距離的最小值為d﹣r= ,

          最大值為d+r= + ,

          ∴曲線C的參數(shù)方程求Q到直線l的距離的最大值與最小值的差2


          【解析】(1)將P的極坐標(4, ),轉化成直角坐標P(2,2 ),將參數(shù)方程轉化成直角坐標,由P點坐標不滿足直線l的方程,P不在直線l上;(2)將C的參數(shù)方程轉化成直角坐標方程,取得圓心坐標及半徑,由點到直線記得距離公式求得圓心到直線的距離d,即可求得點Q到直線l的距離的最小值為d﹣r和最大值為d+r,兩式相減即可求得結果.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知正方體ABCD﹣A1B1C1D1中,點E是棱A1B1的中點,則直線AE與平面BDD1B1所成角的正弦值

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓C:(x﹣2)2+(y﹣3)2=16及直線l:(m+2)x+(3m+1)y=15m+10(m∈R).

          (1)證明:不論m取什么實數(shù),直線l與圓C恒相交;

          (2)求直線l被圓C截得的弦長的最短長度及此時的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓 的右焦點為,離心率為,過作與軸垂直的直線與橢圓交于兩點,

          (1)求橢圓的方程;

          (2)設過點的直線的斜率存在且不為0,直線交橢圓于兩點,若中點為,為原點,直線于點,若以為直徑的圓過右焦點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知:關于x的不等式(mx-(m+1))(x-2)>0(mR)的解集為集合P

          (I)當m>0時,求集合P;

          (II)若{}P,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,公園有一塊邊長為2的等邊ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,DAB上,EAC.

          1)設ADxx≥1),EDy,求用x表示y的函數(shù)關系式;

          2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】“微信搶紅包”自2015年以來異常火爆,在某個微信群某次進行的搶紅包活動中,若所發(fā)紅包的總金額為9元,被隨機分配為1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于4元的概率是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線l:x﹣y=1與圓M:x2+y2﹣2x+2y﹣1=0相交于A,C兩點,點B,D分別在圓M上運動,且位于直線AC兩側,則四邊形ABCD面積的最大值為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】:實數(shù)滿足,其中;

          :實數(shù)滿足.

          Ⅰ)若,為真,求實數(shù)的取值范圍;

          Ⅱ)若的必要不充分條件,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習冊答案