【題目】已知函數(shù),且曲線
與直線
相切于點(diǎn)
,
(1)求;
(2)若,求實(shí)數(shù)
的取值范圍.
【答案】(1) ;(2)
【解析】
(1)先由題意得到,求出
,再對(duì)函數(shù)求導(dǎo),根據(jù)
求出
,從而可得到解析式;
(2)先令 ,先由題意確定
,再由函數(shù)奇偶性的概念,易得到
為偶函數(shù),因此只需
時(shí),
;對(duì)函數(shù)
求導(dǎo),分別討論
,
兩種情況,用導(dǎo)數(shù)的方法研究其單調(diào)性,最值等,即可得出結(jié)果.
(1)由題意可得:,解得
,
由得
.
所以.
(2)令 ,
由得
,所以
.
顯然為偶函數(shù),所以只需
時(shí),
.
,
當(dāng)時(shí),
,即
在
上單調(diào)遞增,
所以,
從而時(shí),
成立.
當(dāng)時(shí),因?yàn)?/span>
在
上單調(diào)遞增,
又時(shí),
;
時(shí),
,
所以存在,使得
,
因此時(shí),
,
,即
在
上單調(diào)遞減,
所以時(shí),
,與
矛盾,
因此時(shí)不成立.
綜上,滿足題設(shè)的的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過(guò)點(diǎn)P作直線l.
(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;
(2)求使直線l和y=f(x)相切且切點(diǎn)異于點(diǎn)P的直線方程y=g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷(xiāo)售額
(萬(wàn)元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷(xiāo)售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
參數(shù)數(shù)據(jù)及公式:,
,
,
,
,
,
.
(1)若用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)用對(duì)數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:,經(jīng)計(jì)算得出線性回歸模型和對(duì)數(shù)模型的
分別約為0.75和0.97,請(qǐng)用
說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為8萬(wàn)元時(shí)的銷(xiāo)售額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線的方程為
,以極點(diǎn)為原點(diǎn),極軸所在直線為
軸建立直角坐標(biāo),直線
的參數(shù)方程為
(
為參數(shù)),
與
交于
,
兩點(diǎn).
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)設(shè)點(diǎn);若
、
、
成等比數(shù)列,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線上有一動(dòng)點(diǎn)
,過(guò)點(diǎn)
作直線
垂直于
軸,動(dòng)點(diǎn)
在
上,且滿足
(
為坐標(biāo)原點(diǎn)),記點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)已知定點(diǎn),
,
為曲線
上一點(diǎn),直線
交曲線
于另一點(diǎn)
,且點(diǎn)
在線段
上,直線
交曲線
于另一點(diǎn)
,求
的內(nèi)切圓半徑
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,過(guò)點(diǎn)
的直線l與E交于A,B兩點(diǎn).當(dāng)l過(guò)點(diǎn)F時(shí),直線l的斜率為
,當(dāng)l的斜率不存在時(shí),
.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解一個(gè)小水庫(kù)中養(yǎng)殖的魚(yú)的有關(guān)情況,從這個(gè)水庫(kù)中多個(gè)不同位置捕撈出100條魚(yú),稱得每條魚(yú)的質(zhì)量(單位:kg),并將所得數(shù)據(jù)分組,畫(huà)出頻率分布直方圖(如圖所示).
(1)在下面表格中填寫(xiě)相應(yīng)的頻率;
分組 | 頻率 |
(2)估計(jì)數(shù)據(jù)落在中的概率;
(3)將上面捕撈的100條魚(yú)分別作一記分組頻率號(hào)后再放回水庫(kù).幾天后再?gòu)乃畮?kù)的多處不同位置捕撈出120條魚(yú),其中帶有記號(hào)的魚(yú)有6條.請(qǐng)根據(jù)這一情況來(lái)估計(jì)該水庫(kù)中魚(yú)的總條數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是一塊平行四邊形園地,經(jīng)測(cè)量,
.擬過(guò)線段
上一點(diǎn)
設(shè)計(jì)一條直路
(點(diǎn)
在四邊形
的邊上,不計(jì)直路的寬度),將該園地分為面積之比為
的左,右兩部分分別種植不同花卉.設(shè)
(單位:m).
(1)當(dāng)點(diǎn)與點(diǎn)
重合時(shí),試確定點(diǎn)
的位置;
(2)求關(guān)于
的函數(shù)關(guān)系式;
(3)試確定點(diǎn)的位置,使直路
的長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若當(dāng)時(shí),
取得極值,求
的值,并求
的單調(diào)區(qū)間.
(2)若存在兩個(gè)極值點(diǎn)
,求
的取值范圍,并證明:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com