日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          的兩條漸近線均與圓x2+y2-6x+5=0相切,且雙曲線的右焦點與圓x2+y2-6x+5=0的圓心重合,則雙曲線的方程是(  )
          分析:先利用圓的一般方程,求得圓心坐標(biāo)和半徑,從而確定雙曲線的焦距,得a、b間的一個等式,再利用直線與圓相切的幾何性質(zhì),利用圓心到漸近線距離等于圓的半徑,得a、b間的另一個等式,聯(lián)立即可解得a、b的值,從而確定雙曲線方程.
          解答:解:∵圓C:x2+y2-6x+5=0的圓心C(3,0),半徑r=2
          ∴雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的右焦點坐標(biāo)為(3,0),
          即c=3,∴a2+b2=9,①
          ∵雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的一條漸近線方程為bx-ay=0,
          ∴C到漸近線的距離等于半徑,即
          3b
          a2+b2
          =2,②
          由①②解得:a2=5,b2=4
          ∴該雙曲線的方程為
          x2
          5
          -
          y2
          4
          =1

          故選A.
          點評:本題主要考查了圓的一般方程,直線與圓的位置關(guān)系及其應(yīng)用,雙曲線的標(biāo)準(zhǔn)方程及其求法,雙曲線的幾何性質(zhì)及其運用,解題時要認(rèn)真審題,仔細解答.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          7
          =1
          ,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
          5
          ,則該雙曲線的漸近線方程為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(b>a>0)
          ,O為坐標(biāo)原點,離心率e=2,點M(
          5
          ,
          3
          )
          在雙曲線上.
          (1)求雙曲線的方程;
          (2)若直線l與雙曲線交于P,Q兩點,且
          OP
          OQ
          =0
          .問:
          1
          |OP|2
          +
          1
          |OQ|2
          是否為定值?若是請求出該定值,若不是請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
          (-2,1)
          (-2,1)
          ;
          (2)已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1的一條漸近線方程為y=
          4
          3
          x,則雙曲線的離心率為
          5
          3
          5
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)滿足
          a1
          b
          2
           |=0
          ,且雙曲線的右焦點與拋物線y2=4
          3
          x
          的焦點重合,則該雙曲線的方程為
           

          查看答案和解析>>

          同步練習(xí)冊答案