日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某校從參加高一年級期末考試的學生中抽出60名學生,將其物理成績(均為整數(shù))分成六段, 后畫出如下頻率分布直方圖.觀察圖形的信息,回答下列問題:

          Ⅰ)估計這次考試的眾數(shù)m與中位數(shù)n(結果保留一位小數(shù));

          () 估計這次考試的及格率(60分及以上為及格)和平均分.

          【答案】(m=75 n=73.3)合格率是75% 平均分是71

          【解析】解:()眾數(shù)是最高小矩形中點的橫坐標,所以眾數(shù)為m=75(分);

          前三個小矩形面積為0.01×10+0.015×10+0.015×10=0.4

          中位數(shù)要平分直方圖的面積,

          )依題意,60及以上的分數(shù)所在的第三、四、五、六組,

          頻率和為 (0.015+0.03+0.025+0.005*10=0.75

          所以,抽樣學生成績的合格率是75%

          利用組中值估算抽樣學生的平均分45f1+55f2+65f3+75f4+85f5+95f6

          =45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71

          估計這次考試的平均分是71分.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】(A)設函數(shù), .

          (1)證明:函數(shù)上為增函數(shù);

          (2)若方程有且只有兩個不同的實數(shù)根,求實數(shù)的值.

          (B)已知函數(shù).

          (1)求函數(shù)的最小值;

          (2)若存在唯一實數(shù),使得成立,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】給出下列四個關于數(shù)列命題:

          (1)若是等差數(shù)列,則三點、共線;

          (2)若是等比數(shù)列,則、 ()也是等比數(shù)列;

          3等比數(shù)列的前n項和為,若對任意的,點均在函數(shù) ( 均為常數(shù))的圖象上,則r的值為.

          4對于數(shù)列,定義數(shù)列為數(shù)列的“差數(shù)列”,若 的“差數(shù)列”的通項為,則數(shù)列的前項和

          其中正確命題的個數(shù)是 ( )

          A. 4 B. 3 C. 2 D. 1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知

          (1)寫出所有與終邊相同的角;

          (2)寫出在內與終邊相同的角;

          (3)若角終邊相同,則是第幾象限的角?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,函數(shù)

          1求證:曲線在點處的切線過定點;

          2在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;

          3求證:對任意給定的正數(shù) ,總存在,使得上為單調函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的焦距為,其上下頂點分別為,.

          (1)求橢圓的方程以及離心率

          (2)的坐標為,過點的任意作直線與橢圓相交于兩點,設直線的斜率依次成等差數(shù)列,探究之間是否存在某種數(shù)量關系,若是請給出的關系式,并證明;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖, 平面, , 的中點.

          (Ⅰ)證明: 平面;

          (Ⅱ)求多面體的體積;

          (Ⅲ)求二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          知直線參數(shù)方程為參數(shù),若以直坐標系為極點,方向為極軸,選擇相同的長度單位建立極坐標系,得曲線極坐標方程為.

          1求直線傾斜角和曲線直角坐標方程;

          2直線曲線、兩點,設點,.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列的前項和為,且滿足

          (1)求證:數(shù)列為等比數(shù)列;

          (2)若,求的前項和

          查看答案和解析>>

          同步練習冊答案