日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)為橢圓上任意一點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為,有,且的最大值.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)若關(guān)于軸的對稱點(diǎn),設(shè)點(diǎn),連接與橢圓相交于點(diǎn),問直線軸是否交于一定點(diǎn).如果是,求出該定點(diǎn)坐標(biāo);如果不是,說明理由.

          【答案】(1);(2)定點(diǎn).

          【解析】

          1)由對稱可得,故.又根據(jù)的最大值得到,進(jìn)而得到,所以可得到橢圓的方程.

          (2)由題意可設(shè)直線的方程為,結(jié)合由直線方程與橢圓方程組成的方程組可得直線的方程為,令,將,代入上式整理得,然后代入兩根和與兩根積可得,從而得直線軸交于定點(diǎn)

          (1)因?yàn)辄c(diǎn)為橢圓上任意一點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為

          所以,

          ,

          所以,

          的最大值為,知當(dāng)為上頂點(diǎn)時,最大,

          所以

          所以,

          所以

          所以橢圓的標(biāo)準(zhǔn)方程為

          (2)由題知直線的斜率存在,設(shè)直線的方程為

          消去并整理得

          因?yàn)橹本與橢圓交于兩點(diǎn),

          所以,

          解得

          設(shè),,則

          ,,①

          由題意得,直線的方程為,

          ,

          ,代入上式整理得

          將①代入上式,得,

          所以直線軸交于定點(diǎn)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

          分組

          頻數(shù)

          頻率

          [10,15)

          10

          0.25

          [15,20)

          25

          n

          [20,25)

          m

          p

          [25,30)

          2

          0.05

          合計

          M

          1

          (1)求出表中M,p及圖中a的值;

          (2)若該校高一學(xué)生有360人,試估計該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

          (3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和

          1)求數(shù)列{an}的通項(xiàng)公式an;

          2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,滿足b11,

          ①求數(shù)列{bn}的通項(xiàng)公式bn;

          ②若存在p,q,kN*,pqk,使得ambq,amanbp,anbk成等差數(shù)列,求m+n的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,橢圓的左、右頂點(diǎn)分別為,離心率,長軸與短軸的長度之和為.

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)在橢圓上任取點(diǎn)(與兩點(diǎn)不重合),直線軸于點(diǎn),直線軸于點(diǎn),證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的幾何體ABCDE中,平面EAB,,,,MEC的中點(diǎn).

          求異面直線DMBE所成角的大。

          求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的離心率為,橢圓的左,右焦點(diǎn)分別為F1F2,點(diǎn)M為橢圓上的一個動點(diǎn),MF1F2面積的最大值為,過橢圓外一點(diǎn)(m,0)(ma)且傾斜角為的直線l交橢圓于C,D兩點(diǎn).

          1)求橢圓的方程;

          2)若,求m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓x2+y2=8內(nèi)有一點(diǎn)P0-1,2),AB為過點(diǎn)P0且傾斜角為α的弦.

          1)當(dāng)α=時,求AB的長;

          2)當(dāng)弦AB被點(diǎn)P0平分時,寫出直線AB的方程(用直線方程的一般式表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】空氣質(zhì)量指數(shù)是一種反映和評價空氣質(zhì)量的方法,指數(shù)與空氣質(zhì)量對應(yīng)如下表所示:

          如圖是某城市2018年12月全月的指數(shù)變化統(tǒng)計圖.

          根據(jù)統(tǒng)計圖判斷,下列結(jié)論正確的是( )

          A. 整體上看,這個月的空氣質(zhì)量越來越差

          B. 整體上看,前半月的空氣質(zhì)量好于后半月的空氣質(zhì)量

          C. 數(shù)據(jù)看,前半月的方差大于后半月的方差

          D. 數(shù)據(jù)看,前半月的平均值小于后半月的平均值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計,繪制得到下面的散點(diǎn)圖.

          (1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;

          (2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.

          附注:參考數(shù)據(jù):

          參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為

          查看答案和解析>>

          同步練習(xí)冊答案