【題目】過橢圓 =1的右焦點(diǎn)F作斜率k=﹣1的直線交橢圓于A,B兩點(diǎn),且
共線.
(1)求橢圓的離心率;
(2)當(dāng)三角形AOB的面積S△AOB= 時(shí),求橢圓的方程.
【答案】
(1)解:設(shè)AB:y=﹣x+c,直線AB交橢圓于兩點(diǎn),A(x1,y1),B(x2,y2),
,b2x2+a2(﹣x+c)2=a2b2,
(b2+a2)x2﹣2a2cx+a2c2﹣a2b2=0,
,
,
=(x1+x2,y1+y2),與
=
共線,
可得3(y1+y2)﹣(x1+x2)=0,3(﹣x1+c﹣x2+c)﹣(x1+x2)=0
(2)解:由a2=3b2,可設(shè)橢圓的方程為: ,c2=3b2﹣b2=2b2,
,
AB:y=﹣x+ b,
,可得:
,
即 ,
∴ ,
,
AB的距離為:|AB|= =
=
,
O到AB距離 .
,
橢圓方程為 .
【解析】(1)設(shè)直線AB的方程,A,B的坐標(biāo),聯(lián)立直線的方程和橢圓的方程,利用韋達(dá)定理,通過+
與
共線,可求出橢圓的離心率;(2)設(shè)橢圓的方程和直線的方程,聯(lián)立方程組,通過韋達(dá)定理求出|AB|,O到直線AB的距離 ,利用三角形的面積,可求出橢圓的方程.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解橢圓的標(biāo)準(zhǔn)方程(橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:
).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù),分別從集合
和
中隨機(jī)取一個(gè)數(shù)
和
得到數(shù)對
.
(1)若,
,求函數(shù)
在
內(nèi)是偶函數(shù)的概率;
(2)若,
,求函數(shù)
有零點(diǎn)的概率;
(3)若,
,求函數(shù)
在區(qū)間
上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線 C2的極坐標(biāo)方程為ρcosθ﹣
ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q為曲線 C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點(diǎn)M,使得A1M⊥平面ADE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),給出下列四個(gè)命題:
①若|z1﹣z2|=0,則 =
②若z1=
,則
=z2
③若|z1|=|z2|,則z1 =z2
④若|z1|=|z2|,則z12=z22
其中真命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓
的半徑為2,圓心在
軸的正半軸上,且與直線
相切.
(1)求圓的方程。
(2)在圓上,是否存在點(diǎn)
,使得直線
與圓
相交于不同的兩點(diǎn)
,且△
的面積最大?若存在,求出點(diǎn)
的坐標(biāo)及對應(yīng)的△
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=( )
A.9
B.15
C.18
D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是長軸長為 的橢圓Q:
上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓的右頂點(diǎn),點(diǎn)M為線段PA的中點(diǎn),且直線PA與OM的斜率之積恒為
.
(1)求橢圓Q的方程;
(2)設(shè)過左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于C,D兩點(diǎn),線段CD的垂直平分線與x軸交于點(diǎn)G,點(diǎn)G橫坐標(biāo)的取值范圍是 ,求|CD|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人數(shù)學(xué)成績的莖葉圖如圖所示:
(1)求出這兩名同學(xué)的數(shù)學(xué)成績的平均數(shù)、標(biāo)準(zhǔn)差.
(2)比較兩名同學(xué)的成績,談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com