日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(5,-5),P(cosα,sinα),其中0≤α≤π
          (1)若cosα=
          4
          5
          ,求證:
          PA
          PO

          (2)若
          PA
          PO
          ,求sinα+3cosα的值.
          分析:(1)由條件利用同角三角函數(shù)的基本關(guān)系求得sinα=
          3
          5
          ,利用兩個(gè)向量的數(shù)量積公式求得
          PA
          PO
          ,可得
          PA
          PO

          (2)利用兩個(gè)向量共線(xiàn)的性質(zhì)可得-sinα(5-cosα)=(-5-sinα)(-cosα),化簡(jiǎn)可得 sinα=-cosα=
          2
          2
          ,從而得到sinα+3cosα的值.
          解答:解:(1)若cosα=
          4
          5
          ,∵已知點(diǎn)A(5,-5),P(cosα,sinα),0≤α≤π,
          ∴sinα=
          3
          5
          PA
          =(5-cosα,-5-sinα),
          PO
          =(-cosα,-sinα),
          PA
          PO
          =(5-cosα,-5-sinα)•(-cosα,-sinα)=-5cosα+cos2α+5sinα+sin2α 
          =1+5sinα-5×cosα=1+5×
          3
          5
          -5×
          4
          5
          =0,
          故有
          PA
          PO

          (2)若
          PA
          PO
          ,則-sinα(5-cosα)=(-5-sinα)(-cosα),化簡(jiǎn)可得-sinα=cosα.
          再由0≤α≤π 可得,α=
          4
          ,故sinα+3cosα=
          2
          2
          -
          3
          2
          2
          =-
          2
          點(diǎn)評(píng):本題主要考查兩個(gè)向量垂直、共線(xiàn)的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系xoy中,已知圓心在直線(xiàn)y=x+4上,半徑為2
          2
          的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿(mǎn)足PF=4,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
          3
          5
          ,點(diǎn)B的縱坐標(biāo)是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線(xiàn)AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線(xiàn)QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線(xiàn)l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案