日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù).
          (1)當(dāng)時,求函數(shù)的極大值;
          (2)若函數(shù)的圖象與函數(shù)的圖象有三個不同的交點,求的取值范圍;
          (3)設(shè),當(dāng)時,求函數(shù)的單調(diào)減區(qū)間.

          (1)5;(2);(3)①當(dāng)時,函數(shù)的單調(diào)減區(qū)間為;
          ②當(dāng)時,函數(shù)的單調(diào)減區(qū)間為,;
          ③當(dāng)時,函數(shù)的單調(diào)減區(qū)間為,,

          解析試題分析:(1)當(dāng)時,函數(shù)是一個具體的三次函數(shù),只須求出的導(dǎo)函數(shù),并令它為零求得其根;然后列出的取值范圍與的符號及單調(diào)性的變化情況表,由此表可求得函數(shù)的極大值;(2)函數(shù)的圖象與函數(shù)的圖象有三個不同的交點,等價于方程有三個不同的實數(shù)根,也等價于方程有三個不同的實數(shù)根,從而可轉(zhuǎn)化為直線與函數(shù)有三個不同的交點,畫草圖可知必須且只需:,所以利用導(dǎo)數(shù)求出函數(shù)的極小值和極大值即可;(3)注意到函數(shù)的圖象與函數(shù)的圖象之間的關(guān)系:將函數(shù)在x軸上方的圖象不變,而將x軸下方的圖象沿x軸翻折到x軸上方即得函數(shù)的圖象,由此可知要求函數(shù)的單調(diào)減區(qū)間,只須先求出函數(shù)的單調(diào)區(qū)間,并求出的所有零點,結(jié)合圖象就可寫出函數(shù)的單調(diào)減區(qū)間;注意分類討論.
          試題解析:(1)當(dāng)時,由=0,得,    2分
          列表如下:



          -1

          3



          0

          0


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)),其導(dǎo)函數(shù)為.
          (1)當(dāng)時,求的單調(diào)區(qū)間;
          (2)當(dāng)時,,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          對于三次函數(shù)
          定義:(1)設(shè)是函數(shù)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”;
          定義:(2)設(shè)為常數(shù),若定義在上的函數(shù)對于定義域內(nèi)的一切實數(shù),都有成立,則函數(shù)的圖象關(guān)于點對稱。
          己知,請回答下列問題:
          (1)求函數(shù)的“拐點”的坐標(biāo)
          (2)檢驗函數(shù)的圖象是否關(guān)于“拐點”對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論(不必證明)
          (3)寫出一個三次函數(shù),使得它的“拐點”是(不要過程)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,拋物線軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價值為,其它的三個邊角地塊每單位面積價值元.
          (1)求等待開墾土地的面積;
          (2)如何確定點C的位置,才能使得整塊土地總價值最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知,,
          (1)當(dāng)時,求的單調(diào)區(qū)間
          (2)若上是遞減的,求實數(shù)的取值范圍; 
          (3)是否存在實數(shù),使的極大值為3?若存在,求的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)的兩個極值點.
          (1)試確定常數(shù)的值;
          (2)試判斷是函數(shù)的極大值點還是極小值點,并求出相應(yīng)極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),( 為常數(shù),為自然對數(shù)的底).
          (1)當(dāng)時,求;
          (2)若時取得極小值,試確定的取值范圍;
          (3)在(2)的條件下,設(shè)由的極大值構(gòu)成的函數(shù)為,將換元為,試判斷曲線是否能與直線為確定的常數(shù))相切,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)若時有極值,求實數(shù)的值和的極大值;
          (2)若在定義域上是增函數(shù),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          函數(shù)的最大值是  ▲   

          查看答案和解析>>

            1. <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>