日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)),其導(dǎo)函數(shù)為.
          (1)當(dāng)時(shí),求的單調(diào)區(qū)間;
          (2)當(dāng)時(shí),,求證:.

          (1)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(2)詳見解析.

          解析試題分析:(1)求單調(diào)區(qū)間是常規(guī)問題,但需注意定義域先行,步驟是:①先求定義域;②后求導(dǎo)數(shù);③令結(jié)合定義域得增區(qū)間,令結(jié)合定義域得減區(qū)間,最后結(jié)果一定要用區(qū)間表示;(2)掌握好執(zhí)因索果,即分析法在此題中的應(yīng)用,以及與基本不等式的結(jié)合.
          試題解析:(1)當(dāng)時(shí), (
          ,即:,
          解得:,所以:函數(shù)的單調(diào)增區(qū)間為,
          同理:單調(diào)減區(qū)間為.
          (2),所以:

          ,
          下面證明,有恒成立,
          即證:成立,
          只需證明:即可,
          對此:設(shè),

          所以:.故命題得證.
          考點(diǎn):1.導(dǎo)數(shù)的應(yīng)用;2.不等式的證明方法;3.創(chuàng)設(shè)條件使用基本不等式.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
          (2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          定義在實(shí)數(shù)集上的函數(shù)。
          ⑴求函數(shù)的圖象在處的切線方程;
          ⑵若對任意的恒成立,求實(shí)數(shù)m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與x軸平行.
          (1)求k的值及的單調(diào)區(qū)間;
          (2)設(shè)其中的導(dǎo)函數(shù),證明:對任意,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)處都取得極值.
          (1)求函數(shù)的解析式;
          (2)求函數(shù)在區(qū)間[-2,2]的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=-ax(a∈R,e為自然對數(shù)的底數(shù)).
          (1)討論函數(shù)f(x)的單調(diào)性;
          (2)若a=1,函數(shù)在區(qū)間(0,+)上為增函數(shù),求整數(shù)m的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)當(dāng)時(shí),求函數(shù)的極大值;
          (2)若函數(shù)的圖象與函數(shù)的圖象有三個(gè)不同的交點(diǎn),求的取值范圍;
          (3)設(shè),當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (2)若當(dāng)時(shí),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          某廠生產(chǎn)某種產(chǎn)品件的總成本(萬元),又知產(chǎn)品單價(jià)的平方與產(chǎn)品件數(shù)成反比,生產(chǎn)100件這樣的產(chǎn)品的單價(jià)為50萬元,則產(chǎn)量定為_____________時(shí)總利潤最大?

          查看答案和解析>>

          同步練習(xí)冊答案