日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義在實數(shù)集上的函數(shù)
          ⑴求函數(shù)的圖象在處的切線方程;
          ⑵若對任意的恒成立,求實數(shù)m的取值范圍。

          (1);(2).

          解析試題分析:利用導(dǎo)數(shù)的幾何意義求曲線在點處的切線方程,注意這個點的切點.(2)對于恒成立的問題,常用到以下兩個結(jié)論:(1),(2)
          (3)解決類似的問題時,注意區(qū)分函數(shù)的最值和極值.求函數(shù)的最值時,要先求函數(shù)在區(qū)間內(nèi)使的點,再計算函數(shù)在區(qū)間內(nèi)所有使的點和區(qū)間端點處的函數(shù)值,最后比較即得(4)判定函數(shù)在某個區(qū)間上的單調(diào)性,進而求最值.
          試題解析:⑴∵,當時,

          ∴所求切線方程為.    4分
          ⑵令
          ∴當時,;
          時,;
          時,;
          要使恒成立,即.
          由上知的最大值在取得.

          ∴實數(shù)m的取值范圍.     12分
          考點:(1)求切線方程;(2)函數(shù)在閉區(qū)間上恒成立的問題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)).
          (Ⅰ)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實數(shù)的取值范圍;
          (Ⅱ)若,且關(guān)于的方程上恰有兩個不等的實根,求實數(shù)的取值范圍;
          (Ⅲ)設(shè)各項為正數(shù)的數(shù)列滿足),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知二次函數(shù)處取得極值,且在點處的切線與直線平行.  
          (1)求的解析式;
          (2)求函數(shù)的單調(diào)遞增區(qū)間及極值。
          (3)求函數(shù)的最值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù), .
          (1)求在點處的切線方程;
          (2)證明: 曲線與曲線有唯一公共點;
          (3)設(shè),比較的大小, 并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)),其導(dǎo)函數(shù)為.
          (1)當時,求的單調(diào)區(qū)間;
          (2)當時,,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          對于三次函數(shù)。
          定義:(1)設(shè)是函數(shù)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”;
          定義:(2)設(shè)為常數(shù),若定義在上的函數(shù)對于定義域內(nèi)的一切實數(shù),都有成立,則函數(shù)的圖象關(guān)于點對稱。
          己知,請回答下列問題:
          (1)求函數(shù)的“拐點”的坐標
          (2)檢驗函數(shù)的圖象是否關(guān)于“拐點”對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論(不必證明)
          (3)寫出一個三次函數(shù),使得它的“拐點”是(不要過程)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),( 為常數(shù),為自然對數(shù)的底).
          (1)當時,求;
          (2)若時取得極小值,試確定的取值范圍;
          (3)在(2)的條件下,設(shè)由的極大值構(gòu)成的函數(shù)為,將換元為,試判斷曲線是否能與直線為確定的常數(shù))相切,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          若函數(shù)在區(qū)間()上既不是單調(diào)遞增函數(shù),也不是單調(diào)遞減函數(shù),則實數(shù)a的取值范圍是______________________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          函數(shù)的最大值是  ▲   

          查看答案和解析>>

          同步練習(xí)冊答案