日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知Sn是數(shù)列{an }的前n項和,Sn滿足關(guān)系式,
          (n≥2,n為正整數(shù)).
          (1)令bn=2nan,求證數(shù)列{bn }是等差數(shù)列,并求數(shù)列{an}的通項公式;
          (2)對于數(shù)列{un},若存在常數(shù)M>0,對任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,稱數(shù)列{un} 為“差絕對和有界數(shù)列”,
          證明:數(shù)列{an}為“差絕對和有界數(shù)列”;
          (3)根據(jù)(2)“差絕對和有界數(shù)列”的定義,當(dāng)數(shù)列{cn}為“差絕對和有界數(shù)列”時,
          證明:數(shù)列{cn•an}也是“差絕對和有界數(shù)列”.
          【答案】分析:(1)整理題設(shè)遞推式得 進(jìn)而表示出Sn+1,進(jìn)而根據(jù)an+1=Sn+1-Sn,求得an+1和an的遞推式,整理得2n+1an+1=2n•an+1,進(jìn)而根據(jù)bn=2nan,求得bn+1-bn=1,進(jìn)而根據(jù)等差數(shù)列的定義判斷出數(shù)列為等差數(shù)列.
          再根據(jù)數(shù)列{bn}的首項和公差,求得數(shù)列的通項公式,進(jìn)而根據(jù)bn=2nan求得an
          (2)把a(bǔ)n代入|an+1-an|+|an-an-1|+…+|a2-a1|中,利用利用錯位想減法求得sn-sn,進(jìn)而判斷出以 恒成立,根據(jù)“差絕對和有界數(shù)列”的定義,證明出數(shù)列{an}為“差絕對和有界數(shù)列”.
          (3)數(shù)列{an},{bn}都是差絕對和有界數(shù)列,則有|an+1-an|+|an-an-1|+…+|a2-a1|≤M1,|bn+1-bn|+|bn-an-1|…++|b2-b1|≤M2,下面只需驗證|an+1bn+1-anbn|+|anbn-an-1bn-1|+…+|a2b2-a1b1|≤M.
          解答:解:(1)當(dāng)n≥2時,,

          所以 ,

          所以2n+1an+1=2n•an+1
          即bn+1-bn=1,(n≥2),又b2-b1=22•2×a1=1
          所以,bn+1-bn=1,n∈N+即{bn}為等差數(shù)列

          (2)由于|an+1-an|+|an-an-1|+…+|a2-a1|=++…+
          sn-sn
          所以 恒成立,
          即[an]為“差絕對和有界數(shù)列”.
          (3)若數(shù)列{an}{cn}是差絕對和有界數(shù)列,則存在正數(shù)M1.M2
          對任意的n∈N,有|an+1-an|+|an-an-1|+…+|a2-a1|≤M1,|cn+1-cn|+|cn-cn-1|+…+|c2-c1|≤M2
          注意到|an|=|an-an-1+an-1+an-2+…+a2-a1+a1|≤|an-an-1|+|an-1-an-2|+…+|a2-a1|+|a1|≤M1+|a1|
          同理:|cn|≤M2+|c1|
          記K2=M2+|c2|,則有K2=M2+|c2||an+1cn+1-ancn|=|an+1cn+1-ancn+1+ancn+1-ancn|≤|cn+1||an+1-an|+|an||cn+1-cn|≤K1|an+1-an|+k1|cn+1-cn|
          因此K1(|cn+1-cn|+|cn-cn-1|+|a2-a1|)≤k2M1+k1M2
          +K1(|cn+1-cn|+|cn-cn-1|+|a2-a1|)≤k2M1+k1M2
          故數(shù)列{ancn}是差絕對和有界數(shù)列.
          點(diǎn)評:本題主要考查了數(shù)列的遞推式,考查學(xué)生理解數(shù)列概念,靈活運(yùn)用數(shù)列表示法的能力,旨在考查學(xué)生的觀察分析和歸納能力,特別是問題(2)(3)的設(shè)置,增加了題目的難度,綜合性較強(qiáng),屬難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*,
          (Ⅰ)求Sn;
          (Ⅱ)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (文科題)
          (1)在等比數(shù)列{an }中,a5=162,公比q=3,前n項和Sn=242,求首項a1和項數(shù)n的值.
          (2)已知Sn是數(shù)列{an}的前n項和,Sn=2n,求an

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Sn是數(shù)列{an}的前n項和,且有Sn=n2+n,則數(shù)列{an}的通項an=
          2n
          2n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Sn是數(shù)列{an}的前n項和,Sn=2n-1,則a10=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•崇明縣一模)已知Sn是數(shù)列{an}前n項和,a1=1,an+1=an+2(n∈N*),則
          lim
          n→∞
          nan
          Sn
          =
          2
          2

          查看答案和解析>>

          同步練習(xí)冊答案