日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
          (1)求證:C′E∥面AB′D′;
          (2)求證:面ACD′⊥面BDD′;
          (3)求四棱錐B′-ABCD與D′-ABCD的公共部分體積.

          【答案】分析:(1)取B′D′的中點(diǎn)為F,連AF,C′F,根據(jù)三角形中位線定理,我們易判斷出AF∥C′E,結(jié)合線面平行的充要條件,即可得到C′E∥平面AB′D′.
          (2)連接AC,CD′,結(jié)合菱形及正三棱柱的幾何特征,我們可以得到AC⊥BD,AC⊥DD',根據(jù)線面垂直的判定定理我們可以得到AC⊥平面BDD′,再由面面垂直的判定定理,即可得到面ACD′⊥面BDD′;
          (3)由圖得四棱錐B′-ABCD與D′-ABCD的公共部分為四棱錐O-ABCD,求出棱錐的高及底面積,代入棱錐體積公式,即可得到四棱錐B′-ABCD與D′-ABCD的公共部分體積.
          解答:解:(1)證明:如圖取B′D′的中點(diǎn)為F,連AF,C′F,易得AFC′F為平行四邊形.

          ∴AF∥C′E,又AF?平面AB′D′
          ∴C′E∥平面AB′D′..(4分)
          (2)證明:連接AC,CD′,因ABCD是菱形故有AC⊥BD
          又BCD-B′C′D′為正三棱柱
          故有AC⊥DD'
          所以AC⊥平面BDD′
          ,而AC?平面ACD′
          所以面ACD′⊥面BDD′(9分)
          (3)設(shè)B′D與BD′的交點(diǎn)為O,
          由圖得四棱錐B′-ABCD與D′-ABCD的公共部分為四棱錐O-ABCD
          且易得O到下底面的距離為1,
          所以公共部分的體積為(14分)
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面垂直的判定,組合幾何體的體積,及直線與平面平行的判定,要求一個(gè)幾何體的體積,我們要先判定幾何體的形狀,然后求出底面積,高,代入公式即可求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
          (1)求證:C′E∥面AB′D′;
          (2)求證:面ACD′⊥面BDD′;
          (3)求四棱錐B′-ABCD與D′-ABCD的公共部分體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
          (1)求證:C′E∥面AB′D′;
          (2)求面AB'D'與面ABD所成銳二面角的余弦值;
          (3)求四棱錐B'-ABCD與D'-ABCD的公共部分體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (14分)如圖,所有棱長(zhǎng)都為2的正三棱柱,四邊形是菱形,其中的中點(diǎn)。

          (1) 求證:

          (2)求證:面;

          (3)求四棱錐的公共部分體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省無(wú)錫市高考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

          如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
          (1)求證:C′E∥面AB′D′;
          (2)求證:面ACD′⊥面BDD′;
          (3)求四棱錐B′-ABCD與D′-ABCD的公共部分體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案