日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.
          (1)求的取值范圍;,
          (2)若直線不經(jīng)過點(diǎn),求證:直線的斜率互為相反數(shù).

          (1);(2)證明過程詳見解析.

          解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、韋達(dá)定理等基礎(chǔ)知識,考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,用待定系數(shù)法,先設(shè)出橢圓方程,根據(jù)焦距和橢圓過,解出,得到橢圓方程,由于直線與橢圓有2個交點(diǎn),所以聯(lián)立得到的關(guān)于的方程有2個不相等實(shí)根,所以利用求解;第二問,分析題意得只需證明,設(shè)出點(diǎn)坐標(biāo),利用第一問得出的關(guān)于的方程找到,將化簡,把的結(jié)果代入即可得證.
          試題解析:(1)設(shè)橢圓的方程為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/b/16tvu4.png" style="vertical-align:middle;" />,所以
          又因?yàn)闄E圓過點(diǎn),所以,解得,故橢圓方程為.   3分
          代入并整理得,
          ,解得.        6分
          (2)設(shè)直線的斜率分別為,只要證明.
          設(shè),則,.       9分
          ,
          分子


          所以直線的斜率互為相反數(shù).        12分
          考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.韋達(dá)定理.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓經(jīng)過點(diǎn),離心率為,過點(diǎn)的直線與橢圓交于不同的兩點(diǎn)
          (1)求橢圓的方程;
          (2)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知雙曲線(a>0,b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離是
          (Ⅰ)求雙曲線的方程及漸近線方程;
          (Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點(diǎn)C、D,且兩點(diǎn)都在以A為圓心的同一個圓上,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn),是拋物線上相異兩點(diǎn),且滿足
          (Ⅰ)若的中垂線經(jīng)過點(diǎn),求直線的方程;
          (Ⅱ)若的中垂線交軸于點(diǎn),求的面積的最大值及此時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          點(diǎn)P是橢圓外的任意一點(diǎn),過點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
          (1)若點(diǎn)P的坐標(biāo)為,求直線的方程。
          (2)設(shè)橢圓的左焦點(diǎn)為F,請問:當(dāng)點(diǎn)P運(yùn)動時,是否總是相等?若是,請給出證明。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的長軸長為4,且過點(diǎn)
          (1)求橢圓的方程;
          (2)設(shè)、、是橢圓上的三點(diǎn),若,點(diǎn)為線段的中點(diǎn),、兩點(diǎn)的坐標(biāo)分別為、,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線,點(diǎn)P(-1,0)是其準(zhǔn)線與軸的焦點(diǎn),過P的直線與拋物線C交于A、B兩點(diǎn).
          (1)當(dāng)線段AB的中點(diǎn)在直線上時,求直線的方程;
          (2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB中點(diǎn)時,求△FAB的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C長軸的兩個頂點(diǎn)為A(-2,0),B(2,0),且其離心率為.

          (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅱ)若N是直線x=2上不同于點(diǎn)B的任意一點(diǎn),直線AN與橢圓C交于點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個交點(diǎn)為M(異于點(diǎn)B),求證:直線NM經(jīng)過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,曲線與曲線相交于、、四個點(diǎn).
          ⑴ 求的取值范圍;
          ⑵ 求四邊形的面積的最大值及此時對角線的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案