點(diǎn)P是橢圓外的任意一點(diǎn),過點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
(1)若點(diǎn)P的坐標(biāo)為,求直線
的方程。
(2)設(shè)橢圓的左焦點(diǎn)為F,請問:當(dāng)點(diǎn)P運(yùn)動時,是否總是相等?若是,請給出證明。
(1)直線的方程
;(2)當(dāng)點(diǎn)P運(yùn)動時,
總是相等的.證明詳見試題解析.
解析試題分析:(1)先設(shè)點(diǎn)的坐標(biāo)為
則可得過點(diǎn)
的切線方程,由兩點(diǎn)確定一條直線可得
的方程;(2)當(dāng)點(diǎn)
運(yùn)動時,
總是相等的.利用向量夾角公式通過計算驗(yàn)證.
試題解析:(1)設(shè)點(diǎn)的坐標(biāo)為
則過點(diǎn)
的切線方程分別為
.因?yàn)辄c(diǎn)
在切線上,所以
.同理
.故直線
的方程
. 5分
(2)當(dāng)點(diǎn)運(yùn)動時,
總是相等的.設(shè)點(diǎn)
的坐標(biāo)為
,則由(1)知,
,
.
同理
,
. 13分
考點(diǎn):1、橢圓的切線方程;2、應(yīng)用平面向量解決解析幾何問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)坐標(biāo)為
,過
的直線交拋物線
于
兩點(diǎn),直線
分別與直線
:
相交于
兩點(diǎn).
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,橢圓的短軸端點(diǎn)與雙曲線
的焦點(diǎn)重合,過點(diǎn)
且不垂直于
軸直線
與橢圓
相交于
、
兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:,離心率為
,焦點(diǎn)
過
的直線交橢圓于
兩點(diǎn),且
的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點(diǎn)P(0,m)(m
0),與橢圓C交于相異兩點(diǎn)A,B且
.若
,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為
,且經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過點(diǎn)
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左焦點(diǎn)為
,離心率為
,過點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長為
.
(1) 求橢圓方程.
(2) 過點(diǎn)的直線
與橢圓交于不同的兩點(diǎn)
,當(dāng)
面積最大時,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若在
處取得極值,求
的值;
(2)求的單調(diào)區(qū)間;
(3)若且
,函數(shù)
,若對于
,總存在
使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-
的距離為
-
,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com