日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線
          (1)試求曲線在點處的切線方程;
          (2)試求與直線平行的曲線C的切線方程.
          (1) ;(2)

          試題分析:(1)先求出的值,再求函數(shù)的導函數(shù),求得的值即為點斜率,代入點斜式方程,再化為一般式方程即可;(2)設切點為,利用導數(shù)的幾何意義和相互平行的直線的斜率相等,即可得所求切線的斜率,再求出切點的坐標,代入點斜式方程,再化為一般式方程即可.
          (1) ∵,∴,求導數(shù)得:,
          ∴切線的斜率為,
          ∴所求切線方程為,即:
          (2)設與直線平行的切線的切點為,
          則切線的斜率為
          又∵所求切線與直線平行,∴,
          解得:,代入曲線方程得:切點為,
          ∴所求切線方程為:
          即:
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù)f(x)=x2-4,設曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n∈N +),其中xn為正實數(shù).
          (1)用xn表示xn+1
          (2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
          (3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù)處的切線的斜率為.
          (1)求實數(shù)的值及函數(shù)的最大值;
          (2)證明:

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù),其中.
          (1)當時,求函數(shù)的圖象在點處的切線方程;
          (2)如果對于任意、,且,都有,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          曲線y=x3+ax+1的一條切線方程為y=2x+1,則實數(shù)a=________.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知實數(shù),函數(shù)。
          (1)當時,討論函數(shù)的單調(diào)性;
          (2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;
          (3)若當時,函數(shù)圖象上的點均在不等式,所表示的平面區(qū)域內(nèi),求實數(shù) 的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,矩形是一個觀光區(qū)的平面示意圖,建立平面直角坐標系,使頂點在坐標原點分別為軸、軸,(百米),(百米)()觀光區(qū)中間葉形陰影部分是一個人工湖,它的左下方邊緣曲線是函數(shù)的圖象的一段.為了便于游客觀光,擬在觀光區(qū)鋪設一條穿越該觀光區(qū)的直路(寬度不計),要求其與人工湖左下方邊緣曲線段相切(切點記為),并把該觀光區(qū)分為兩部分,且直線左下部分建設為花圃.記點的距離為表示花圃的面積.
          (1)求花圃面積的表達式;
          (2)求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          若存在正實數(shù),對于任意,都有,則稱函數(shù) 上是有
          界函數(shù).下列函數(shù)①;  ②;  ③;  ④,
          其中“在上是有界函數(shù)”的序號為          

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          若點P是曲線上任意一點,則點P到直線y=x-2的最小值為(    ).
          A.1
          B.
          C.
          D.

          查看答案和解析>>

          同步練習冊答案