日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知是拋物線的焦點(diǎn),是拋物線上一點(diǎn)過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.

          1)求拋物線的方程;

          2)若點(diǎn)的橫坐標(biāo)為4,過的直線與拋物線有兩個(gè)不同的交點(diǎn),直線與圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)大于4,求當(dāng)取得最小值時(shí)直線的方程.

          【答案】1;(2.

          【解析】

          1)由拋物線方程知,知圓心Q在線段OF的中垂線上,點(diǎn)Q 準(zhǔn)線的距離為,則可求出的值,進(jìn)而求得拋物線C的標(biāo)準(zhǔn)方程;

          2)由題意設(shè)出直線方程,分別在拋物線和圓Q中求出弦長(zhǎng),將表示成關(guān)于k的函數(shù),且由點(diǎn)E的橫坐標(biāo)大于4可得出k的取值范圍,利用導(dǎo)函數(shù)分析函數(shù)上的單調(diào)性,求出其取得最小值時(shí)k的值,進(jìn)而求出直線l的方程.

          解:(1)由題意可知

          三點(diǎn)的圓的圓心應(yīng)在線段OF的中垂線上,

          又因?yàn)辄c(diǎn)Q到準(zhǔn)線的距離為

          解得,

          故所求拋物線的方程為:;

          2的直線與拋物線有兩個(gè)不同的交點(diǎn)

          直線l的斜率存在,設(shè)l為:

          ,

          設(shè),

          由韋達(dá)定理得

          故焦點(diǎn)弦

          過點(diǎn),及點(diǎn),

          可求得圓Q的方程為

          ,

          點(diǎn)的橫坐標(biāo)大于4,

          ,解得

          設(shè)

          ,得,

          單調(diào)遞減,單調(diào)遞增,

          即當(dāng)時(shí),取得最小值,

          故所求直線l的方程為:.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面,四邊形是直角梯形,,F的中點(diǎn),E上的一點(diǎn),則下列說法正確的是(

          A.,則平面

          B.,則四棱錐的體積是三棱錐體積的6

          C.三棱錐中有且只有三個(gè)面是直角三角形

          D.平面平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋中裝有9只球,其中標(biāo)有數(shù)字1,2,3,4的小球各2個(gè),標(biāo)數(shù)字5的小球有1個(gè).從袋中任取3個(gè)小球,每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字.

          (1)求取出的3個(gè)小球上的數(shù)字互不相同的概率;

          (2)求隨機(jī)變量的分布列和期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在上的函數(shù).

          1)當(dāng)時(shí),解不等式;

          2)若對(duì)任意恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

          A. 45B. 15C. 10D. 0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.

          (Ⅰ)求證:;

          (Ⅱ)若點(diǎn)在線段上,且平面,,,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若曲線在點(diǎn)處的切線方程為,求a的值;

          2)若是函數(shù)的極值點(diǎn),且,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】1是由菱形,平行四邊形和矩形組成的一個(gè)平面圖形,其中,,將其沿,折起使得重合,如圖2

          1)證明:圖2中的平面平面;

          2)求圖2中點(diǎn)到平面的距離;

          3)求圖2中二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),證明:

          2)若有且只有一個(gè)零點(diǎn),求的范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案