【題目】某理財公司有兩種理財產(chǎn)品A和B,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):
產(chǎn)品A
投資結(jié)果 | 獲利40% | 不賠不賺 | 虧損20% |
概率 |
產(chǎn)品B
投資結(jié)果 | 獲利20% | 不賠不賺 | 虧損10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實數(shù)p的取值范圍;
(2)若丙要將家中閑置的10萬元人民幣進行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?
【答案】(1);
(2)當時,E(X)=E(Y),選擇產(chǎn)品A和產(chǎn)品B一年后投資收益的數(shù)學期望相同,可以在產(chǎn)品A和產(chǎn)品B中任選一個;
當時,E(X)>E(Y),選擇產(chǎn)品A一年后投資收益的數(shù)學期望較大,應(yīng)選產(chǎn)品A;
當時,E(X)<E(Y),選擇產(chǎn)品B一年后投資收益的數(shù)學期望較大,應(yīng)選產(chǎn)品B.
【解析】
(1)先表示出兩人全都不獲利的概率,再求至少有一人獲利的概率,列出不等式求解;
(2)分別求出兩種產(chǎn)品的期望值,對期望中的參數(shù)進行分類討論,得出三種情況.
(1)記事件A為“甲選擇產(chǎn)品A且盈利”,事件B為“乙選擇產(chǎn)品B且盈利”,事件C為“一年后甲,乙兩人中至少有一人投資獲利”,則,
.
所以,解得
.
又因為,q>0,所以
.
所以.
(2)假設(shè)丙選擇產(chǎn)品A進行投資,且記X為獲利金額(單位:萬元),則隨機變量X的分布列為
X | 4 | 0 | -2 |
p |
則.
假設(shè)丙選擇產(chǎn)品B進行投資,且記Y為獲利金額(單位:萬元),則隨機變量Y的分布列為
Y | 2 | 0 | -1 |
p | p | q |
則.
討論:
當時,E(X)=E(Y),選擇產(chǎn)品A和產(chǎn)品B一年后投資收益的數(shù)學期望相同,可以在產(chǎn)品A和產(chǎn)品B中任選一個;
當時,E(X)>E(Y),選擇產(chǎn)品A一年后投資收益的數(shù)學期望較大,應(yīng)選產(chǎn)品A;
當時,E(X)<E(Y),選擇產(chǎn)品B一年后投資收益的數(shù)學期望較大,應(yīng)選產(chǎn)品B.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
,其中
.
(1)求過點和函數(shù)
的圖像相切的直線方程;
(2)若對任意,有
恒成立,求
的取值范圍;
(3)若存在唯一的整數(shù),使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,
,
,
,點
在線段
上,且
,
,
平面
.
(1)求證:平面平面
;
(2)當四棱錐的體積最大時,求四棱錐
的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減;如圖,四邊形
中,
,
,
為
的內(nèi)角
的對邊,
且滿足.
(Ⅰ)證明:;
(Ⅱ)若,設(shè)
,
,
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x﹣1)(a>0,且a≠1).
(1)若f(x)在[2,9]上的最大值與最小值之差為3,求a的值;
(2)若a>1,求不等式f(2x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過坐標原點的直線l與圓C:x2+y2﹣8x+12=0相交于不同的兩點A,B.
(1)求線段AB的中點P的軌跡M的方程.
(2)是否存在實數(shù)k,使得直線l1:y=k(x﹣5)與曲線M有且僅有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個幾何體的平面展開圖,其中四邊形為正方形,
,
,
,
為全等的等邊三角形,
、
分別為
、
的中點,在此幾何體中,下列結(jié)論中正確的個數(shù)有()
①平面平面
②直線與直線
是異面直線
③直線與直線
共面
④面與面
的交線與
平行
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學將100名高一新生分成水平相同的甲、乙兩個平行班,每班50人,某教師采用、
兩種不同的教學模式分別在甲、乙兩個班進行教改實驗,為了了解教學效果,期末考試后,該教師分別從兩班中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如圖所示,記成績不低于90分為“成績優(yōu)秀”.
(1)在乙班的20個個體中,從不低于86分的成績中隨機抽取2人,求抽出的兩個人均“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表;能否在犯錯誤的概率不超過0.10的前提下認為成績優(yōu)秀與教學模型有關(guān).
甲班( | 乙班( | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)當時,求
的極值;
(2)當時,若函數(shù)
恰有兩個不同的零點,求
的值;
(3)當時,若
的解集為
,且
中有且僅有一個整數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com