日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列滿足

          的前項(xiàng)和為      

           

          【答案】

          10250

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{log4(an-1)}(n∈N*),且a1=5,a3=65,函數(shù)f(x)=x2-4x+4,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn=f(n),
          (1)求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式;
          (2)記數(shù)列cn=(an-1)•bn,且{cn}的前n項(xiàng)和為Tn,求Tn
          (3)設(shè)各項(xiàng)均不為零的數(shù)列{dn}中,所有滿足dk•dk+1<0的整數(shù)k的個數(shù)稱為這個數(shù)列的異號數(shù),令dn=
          bn-4bn
          (n∈N*),試問數(shù)列{dn}是否存在異號數(shù),若存在,請求出;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}、{bn}滿足a1=
          1
          2
          ,2nan+1=(n+1)an
          ,且bn=ln(1+an)+
          1
          2
          a
          2
          _
          ,n∈N*
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)對一切n∈N*,證明
          2
          a n+2
          an
          bn
          成立;
          (Ⅲ)記數(shù)列{an2}、{bn}的前n項(xiàng)和分別是An、Bn,證明:2Bn-An<4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年重慶卷)(12分)

          已知各項(xiàng)均為正數(shù)的數(shù)列{}的前n項(xiàng)和滿足,且

          (1)求{}的通項(xiàng)公式;

          (2)設(shè)數(shù)列{}滿足,并記為{}的前n項(xiàng)和,求證:.  

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年重慶卷)(12分)

          已知各項(xiàng)均為正數(shù)的數(shù)列{}的前n項(xiàng)和滿足,且

          (1)求{}的通項(xiàng)公式;

          (2)設(shè)數(shù)列{}滿足,并記為{}的前n項(xiàng)和,求證:.  

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列{}的前n項(xiàng)和滿足,且

          (1)求{}的通項(xiàng)公式;

          (2)設(shè)數(shù)列{}滿足,并記為{}的前n項(xiàng)和,

          求證:.  

          查看答案和解析>>

          同步練習(xí)冊答案