日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知奇函數(shù)f(x)滿足f(x+1)=﹣f(x),當(dāng)x∈(0,1)時(shí),f(x)=﹣2x , 則f(log210)等于

          【答案】
          【解析】解:∵3<log210<4,

          ∴﹣1<﹣4+log210<0,

          ∵f(x+1)=﹣f(x),

          ∴f(x+2)=﹣f(x+1)=f(x),

          ∴函數(shù)f(x)是以2為周期的奇函數(shù),

          ∴f(log210)=f(﹣4+log210)=﹣f(4﹣log210),

          ∵當(dāng)x∈(0,1)時(shí),f(x)=﹣2x,

          ∴f(4﹣log210)=﹣ =﹣

          即f(log210)= ,

          故答案為:

          先判斷l(xiāng)og210的范圍,利用函數(shù)的周期為2轉(zhuǎn)化到區(qū)間(﹣1,0)內(nèi),再根據(jù)奇函數(shù)的定義和對(duì)數(shù)的運(yùn)算性質(zhì)求出f(log210)的值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AA1=1,E為BC中點(diǎn).
          (1)求證:C1D⊥D1E;
          (2)若二面角B1﹣AE﹣D1的大小為90°,求AD的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2. (Ⅰ)證明:平面PAD⊥平面ABFE;
          (Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知二面角α-MN-β的大小為60°,菱形ABCD在平面β內(nèi),A,B兩點(diǎn)在棱MN上,∠BAD=60°,E是AB的中點(diǎn),DO⊥平面α,垂足為O.

          (1)證明:AB⊥平面ODE.

          (2)求異面直線BC與OD所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍是(
          A.a≤1
          B.a≥1
          C.a≤0
          D.a≥0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCDy軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直線過(guò)點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長(zhǎng)為12②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)判斷函數(shù)的奇偶性,并給出證明;

          (2)解不等式: ;

          (3)若函數(shù)上單調(diào)遞減,比較f(2)+f(4)+…+f(2n)與2nnN*)的大小關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
          (Ⅱ)討論g(x)與 的大小關(guān)系;
          (Ⅲ)求a的取值范圍,使得g(a)﹣g(x)< 對(duì)任意x>0成立.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案