已知函數(shù)
(1)若存在,使得
成立,求實數(shù)
的取值范圍;
(2)解關(guān)于的不等式
;
(3)若,求
的最大值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)
對任意
都有
(
為常數(shù)).
(1)判斷為何值時
為奇函數(shù),并證明;
(2)設(shè),
是
上的增函數(shù),且
,若不等式
對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=f(x)(x∈R)的圖像是一條開口向下且對稱軸為x=3的拋物線,試比較大。
(1)f(6)與f(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的單調(diào)函數(shù)滿足
且對任意
都有
.
(1)求證為奇函數(shù);
(2)若對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
是自然對數(shù)的底數(shù))的最小值為
.
(Ⅰ)求實數(shù)的值;
(Ⅱ)已知且
,試解關(guān)于
的不等式
;
(Ⅲ)已知且
.若存在實數(shù)
,使得對任意的
,都有
,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,判斷
和
的大小,并說明理由;
(3)求證:當(dāng)時,關(guān)于
的方程:
在區(qū)間
上總有兩個不同的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)p:函數(shù)y=loga(x+1)(a>0且a≠1)在(0,+∞)上單調(diào)遞減; q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.如果p∧q為假,p∨q為真,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)
。
(I)記求
的表達式;
(II)是否存在,使函數(shù)
在區(qū)間
內(nèi)的圖像上存在兩點,在該兩點處的切線相互垂直?若存在,求
的取值范圍;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com