日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)求曲線在點(diǎn)處的切線方程;

          (2)證明:.

          【答案】(1)所求切線方程為;(2)

          【解析】

          試題(1)先求出導(dǎo)函數(shù),根據(jù)對數(shù)的幾何意義可得切線斜率,利用點(diǎn)斜式可得切線方程;(2)要證,只需證,利用導(dǎo)數(shù)研究兩函數(shù)的單調(diào)性,從而求出兩函數(shù)的最值即可證明,進(jìn)而可得結(jié)論.

          試題解析:(1)因?yàn)?/span>,

          所以,

          因?yàn)?/span>,所以曲線在點(diǎn)處的切線方程為.

          (2)證明:要證,只需證,

          設(shè),

          ,

          ,令,所以,

          因?yàn)?/span>,所以,

          ,所以,

          從而,即.

          【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)而求最值以及利用導(dǎo)數(shù)證明不等式,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn)出的切線斜率(當(dāng)曲線處的切線與軸平行時,在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線軸相交于點(diǎn),兩點(diǎn),是該拋物線上位于第一象限內(nèi)的點(diǎn).

          (Ⅰ) 記直線的斜率分別為,求證:為定值;

          (Ⅱ)過點(diǎn),垂足為.關(guān)于軸的對稱點(diǎn)恰好在直線上,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其范圍為[010],分別有五個級別:T[0,2)暢通;T[2,4)基本暢通;T[46)輕度擁堵;T[6,8)中度擁堵;T[8,10]嚴(yán)重?fù)矶,晚高峰時段(T≥2),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.

          1)請補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯?

          2)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個路段,求依次抽取的三個級別路段的個數(shù);

          3)從(2)中抽出的6個路段中任取2個,求至少一個路段為輕度擁堵的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角梯形PBCD中,∠D=∠C,BCCD2,PD4,APD的中點(diǎn),如圖1,將PAB沿AB折到SAB的位置,使SBBC,點(diǎn)ESD上,如圖2

          1)求證:SA⊥平面ABCD

          2)若ESD中點(diǎn),求D點(diǎn)到面EAC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,底面,,,.

          (1)證明;

          (2)求異面直線所成角的余弦值;

          (3)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方

          向滾動,MN是小圓的一條固定直徑的兩個端點(diǎn).那么,當(dāng)小圓這

          樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】蝴蝶定理因其美妙的構(gòu)圖,像是一只翩翩起舞的蝴蝶,一代代數(shù)學(xué)名家蜂擁而證,正所謂花若芬芳蜂蝶自來.如圖,已知圓的方程為,直線與圓交于,,直線與圓交于,.原點(diǎn)在圓內(nèi).

          1)求證:.

          2)設(shè)軸于點(diǎn)軸于點(diǎn).求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在梯形中,,,平面平面,四邊形是菱形,

          1)求證:

          2)求多面體被平面分成兩部分的體積比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形與梯形所在的平面互相垂直, ,,點(diǎn)在線段上.

          () 若點(diǎn)的中點(diǎn),求證:平面;

          () 求證:平面平面;

          () 當(dāng)平面與平面所成二面角的余弦值為時,求的長.

          查看答案和解析>>

          同步練習(xí)冊答案